Detail publikace
Unfolded Low-rank + Sparse Reconstruction for MRI
MOKRÝ, O. VITOUŠ, J.
Originální název
Unfolded Low-rank + Sparse Reconstruction for MRI
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
We apply the methodology of deep unfolding on the problem of reconstruction of DCE-MRI data. The problem is formulated as a convex optimization problem, solvable via the primal–dual splitting algorithm. The unfolding allows for optimal hyperparameter selection for the model. We examine two approaches – with the parameters shared across the layers/iterations, and an adaptive version where the parameters can differ. The results demonstrate that the more complex model can better adapt to the data.
Klíčová slova
DCE-MRI, proximal splitting algorithms, deep unfolding, L+S model
Autoři
MOKRÝ, O.; VITOUŠ, J.
Vydáno
26. 4. 2022
Nakladatel
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo
Brno
ISBN
978-80-214-6030-0
Kniha
Proceedings II of the 28th Conference STUDENT EEICT 2022 Selected papers
Edice
1
Strany od
271
Strany do
275
Strany počet
5
URL
BibTex
@inproceedings{BUT177793,
author="Ondřej {Mokrý} and Jiří {Vitouš}",
title="Unfolded Low-rank + Sparse Reconstruction for MRI",
booktitle="Proceedings II of the 28th Conference STUDENT EEICT 2022 Selected papers",
year="2022",
series="1",
pages="271--275",
publisher="Brno University of Technology, Faculty of Electrical Engineering and Communication",
address="Brno",
isbn="978-80-214-6030-0",
url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_2_v3.pdf"
}
Odpovědnost: Ing. Marek Strakoš