Detail publikace
Nodal solutions for the nonlinear Robin problem in Orlicz spaces
BAHROUNI, A. MISSAOUI, H. RADULESCU, V.
Originální název
Nodal solutions for the nonlinear Robin problem in Orlicz spaces
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper we consider a non-linear Robin problem driven by the Orlicz g-Laplacian operator. Using variational technique combined with a suitable truncation and Morse theory (critical groups), we prove two multiplicity theorems with sign information for all the solutions. In the first theorem, we establish the existence of at least two non-trivial solutions with fixed sign. In the second, we prove the existence of at least three non-trivial solutions with sign information (one positive, one negative, and the other change sign) and order. The result of the nodal solution is new for the non-linear g-Laplacian problems with the Robin boundary condition.
Klíčová slova
Constant sign solutions; Critical groups; g-Laplacian; Nodal solutions; Orlicz–Sobolev space; Robin boundary value; Truncated functional
Autoři
BAHROUNI, A.; MISSAOUI, H.; RADULESCU, V.
Vydáno
7. 2. 2025
ISSN
1878-5719
Periodikum
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS
Ročník
81
Číslo
104186
Stát
Nizozemsko
Strany počet
29
URL
BibTex
@article{BUT194034,
author="Anouar {Bahrouni} and Hlel {Missaoui} and Vicentiu {Radulescu}",
title="Nodal solutions for the nonlinear Robin problem in Orlicz spaces",
journal="NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS",
year="2025",
volume="81",
number="104186",
pages="29",
doi="10.1016/j.nonrwa.2024.104186",
issn="1878-5719",
url="https://doi.org/10.1016/j.nonrwa.2024.104186"
}
Odpovědnost: Ing. Marek Strakoš