Detail publikace

Singular non-autonomous (p,q)-equations with competing nonlinearities

PAPAGEORGIOU, N. QIN, D. RADULESCU, V.

Originální název

Singular non-autonomous (p,q)-equations with competing nonlinearities

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

We consider a parametric non-autonomous (p,q)-equation with a singular term and competing nonlinearities, a parametric concave term and a Carathéodory perturbation. We consider the cases where the perturbation is (p−1)-linear and where it is (p−1)-superlinear (but without the use of the Ambrosetti–Rabinowitz condition). We prove an existence and multiplicity result which is global in the parameter λ>0 (a bifurcation type result). Also, we show the existence of a smallest positive solution and show that it is strictly increasing as a function of the parameter. Finally, we examine the set of positive solutions as a function of the parameter (solution multifunction). First, we show that the solution set is compact in C01(Ω̄) and then we show that the solution multifunction is Vietoris continuous and also Hausdorff continuous as a multifunction of the parameter.

Klíčová slova

(p-1)-linear and (p-1)-superlinear perturbations; Minimal solution; Nonlinear regularity theory; Solution multifunction; Truncations and comparisons

Autoři

PAPAGEORGIOU, N.; QIN, D.; RADULESCU, V.

Vydáno

2. 2. 2025

ISSN

1878-5719

Periodikum

NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS

Ročník

81

Číslo

104225

Stát

Nizozemsko

Strany počet

25

URL

BibTex

@article{BUT194033,
  author="Nikolaos S. {Papageorgiou} and Dongdong {Qin} and Vicentiu {Radulescu}",
  title="Singular non-autonomous (p,q)-equations with competing nonlinearities",
  journal="NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS",
  year="2025",
  volume="81",
  number="104225",
  pages="25",
  doi="10.1016/j.nonrwa.2024.104225",
  issn="1878-5719",
  url="https://doi.org/10.1016/j.nonrwa.2024.104225"
}

Odpovědnost: Ing. Marek Strakoš