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Abstract—Self-supervised learning (SSL) models have significantly
advanced speech processing tasks, and several benchmarks have been pro-
posed to validate their effectiveness. However, previous benchmarks have
primarily focused on single-speaker scenarios, with less exploration of
target-speaker tasks in noisy, multi-talker conditions—a more challenging
yet practical case. In this paper, we introduce the Target-Speaker Speech
Processing Universal Performance Benchmark (TS-SUPERB), which
includes four widely recognized target-speaker processing tasks that
require identifying the target speaker and extracting information from
the speech mixture. In our benchmark, the speaker embedding extracted
from enrollment speech is used as a clue to condition downstream models.
The benchmark result reveals the importance of evaluating SSL models
in target speaker scenarios, demonstrating that performance cannot be
easily inferred from related single-speaker tasks. Moreover, by using a
unified SSL-based target speech encoder, consisting of a speaker encoder
and an extractor module, we also investigate joint optimization across TS
tasks to leverage mutual information and demonstrate its effectiveness.1

Index Terms—Self-supervised learning, target-speaker speech process-
ing, speech recognition, speech enhancement, voice activity detection

I. INTRODUCTION

Many speech processing tasks, including automatic speech recog-
nition (ASR), speaker verification (SV), and speech enhancement
(SE), have been significantly advanced by self-supervised learning
(SSL) [1]–[4]. This paradigm enables downstream tasks to achieve
remarkable performance by exploiting general-purpose features from
large SSL models trained on large-scale unlabeled datasets, even
with lightweight task-oriented decoders trained on limited amounts
of labeled data [5]–[9].

To quantitatively evaluate the capabilities of SSL models across
various speech tasks, benchmarks such as the Speech processing
Universal PERformance Benchmark (SUPERB) and its variants have
been proposed [10]–[15]. SUPERB offers a comprehensive compari-
son of SSL models across a wide range of downstream speech tasks,
such as ASR and SV. Its downstream tasks consist mostly of single-
speaker speech processing tasks.

However, in daily conversational situations, the speech of interest
is often interfered with by other speakers (and background noise). To
address the complex yet practical conditions, several target-speaker
(TS) speech processing tasks, including target speech extraction
(TSE), personalized SE (PSE), target-speaker ASR (TS-ASR), and
personal voice activity detection (PVAD) [16]–[19], have been de-
veloped. For instance, TSE, which aims to extract the TS’s speech
signal from a mixture, can be used to develop recording devices
that focus on the desired speaker for, e.g., hearing aids/hearables or
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teleconferencing systems applications [20]. TS-ASR, which aims to
transcribe only the desired user’s speech, can be used to develop
personalized ASR systems, potentially for use in smart speakers or
smart watches [21].

Standard TS systems exploit TS’s clues, such as speaker embed-
dings derived from a pre-recorded enrollment utterance, to extract
information about the speaker from a multi-talker mixture. Overall,
TS tasks are more challenging than conventional speech processing
tasks because they address two problems simultaneously: identifying
the TS and extracting information about the speaker from the speech
mixture. We, therefore, characterize the TS tasks, such as TS-
ASR, as having a “dual objective” in contrast to conventional tasks,
such as ASR, that address only one problem, i.e., have a “single
objective,” because they deal with single-speaker and thus do not
require identifying the TS.

Recently, several studies have explored combining TS systems
with SSL models [22]–[25]. Despite the growing interest in TS
tasks with SSL models, existing benchmarks have not fully assessed
and compared their capabilities in addressing TS tasks. To advance
research in these areas and promote the development of more versatile
SSL models, the present study proposes Target Speaker SUPERB
(TS-SUPERB). TS-SUPERB includes four widely accepted down-
stream tasks—TS-ASR, PSE, TSE, and PVAD—with a focus on
extracting content (ASR) and fine or coarse acoustic characteristics
(SE and VAD, respectively).

In our benchmark, the downstream models are kept simple, with a
structure similar to the related tasks in SUPERB, and consist of two
modules: an SSL-based target speech encoder and a task-oriented
decoder as shown in Fig. 1. The target speech encoder includes
an SSL-based extractor that obtains the TS features, informed by
speaker representations derived from enrollment speech via an SSL-
based speaker encoder. Since the downstream tasks in TS-SUPERB
are related, we can use a similar configuration for the downstream
model across all TS tasks, except for the prediction head (or decoder
module). The decoder module is task-specific, aligning with the
model architecture of related single-speaker tasks in SUPERB.
TS-SUPERB extends the evaluation framework beyond the single-

objective SUPERB benchmark by emphasizing various aspects criti-
cal for overlapped multi-talker speech processing. The key contribu-
tions of the proposed TS-SUPERB are:

Comprehensive Evaluation: The proposed TS-SUPERB provides
a standardized framework for evaluating SSL-based TS processing
models across four tasks, highlighting SSL’s potential in extracting
the TS information from mixtures. We will release our benchmark
with an evaluation code to encourage further research in SSL-based
TS speech processing.

Comparative Analysis: We benchmark seven leading speech SSL
models with the proposed TS-SUPERB. Additionally, we analyze
the relationship between tasks by computing the layer-wise weight
distribution and further explore correlations between TS tasks and
other related tasks (e.g., ASR, SV, and speech separation (Sep)).IC
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Fig. 1. Architecture of proposed TS-SUPERB system. All downstream models
use the same architecture for the target speaker encoder, followed by the TSE,
PSE, TS-ASR, or PVAD decoder, depending on the task.

Shared architecture: The target speech encoder, which processes
both the input mixture and enrollment speech, shares the same
architecture across tasks. By sharing the parameters of the target
speech encoder, we can explore jointly training it using multi-
task learning across different TS downstream tasks. We demonstrate
experimentally that such joint-training can improve performance.

II. RELATED WORK

Benchmarking SSL models is essential to drive progress in the
field. Current speech SSL benchmarks cover a wide variety of
downstream tasks [10]–[15], [26]–[31], but none include TS speech
processing tasks. It is thus difficult to compare the effectiveness of
recently proposed SSL schemes for TS tasks. For example, there
has been an increasing focus on using SSL models for TS speech
processing [25], [32]. In [25], the enrollment speech is incorporated
into the pre-training stage as an auxiliary input, achieving superior
TS-ASR performance. In [32], the authors proposed appending
speaker embeddings to the Transformer encoder’s input within an
SSL model and then fine-tuning the entire model for TS-ASR.
However, these studies focused on a single TS task. It is thus unclear
if the learned representation by these models can also be effective for
other TS tasks. In this paper, we propose a framework to tackle this
issue. Our proposed TS-SUPERB assembled datasets to allow fair
comparison between SSL models. We also provide an experimental
framework, allowing us to easily benchmark the performance of SSL
models for various downstream TS tasks. While the TS tasks are
relatively complex compared to single-speaker tasks, our benchmark
uses a simple architecture for the downstream model, consisting
of a few bidirectional long short-term memory (BLSTM) layers,
similar to those used in conventional speech SSL benchmarks, such
as SUPERB [10] or SUPERB-SG [11].

III. TS-SUPERB

In this section, we provide details on the datasets for the
multi-talker scenario and the downstream models/tasks within the
TS-SUPERB framework, including TSE, PSE, PVAD, and TS-ASR.

TABLE I
STATISTICS OF SPEECH DATASETS USED FOR THE DIFFERENT

DOWNSTREAM TASKS IN TS-SUPERB.

TASK Datasets Train/Val/Test (hrs)

TSE Libri2Mix-min clean [33] 43.2 / 4.5 / 4.1
PSE Noisy SparseLibri2Mix [33] 70.1 / 6.1 / 5.8
PVAD Noisy SparseLibri2Mix [33] 70.1 / 6.1 / 5.8
TS-ASR Libri2Mix-max clean [33] 56.3 / 7.6 / 7.0

TSE+TS-ASR Libri2Mix-max clean [33] 56.3 / 7.6 / 7.0
PSE+PVAD Noisy SparseLibri2Mix [33] 70.1 / 6.1 / 5.8

A. Datasets

The training/testing datasets for each task, along with their statis-
tical information, are listed in Table I. For the TSE task, we use the
Libri2Mix-min clean dataset, which consists of two-speaker mixtures
truncated to the duration of the shortest utterance to produce 100%
overlap ratio. For PSE and PVAD, we use the Noisy SparseLibri2Mix
dataset [33]. The dataset simulates overlapped speech in conversa-
tional audio signals, by mixing speech from LibriSpeech [34] and
noise from the WHAM! dataset [35]. Similar to LibriCSS [36], the
overlap ratio in the training set ranges from 0 to 40%. The training
set consists of 24 000 mixtures, totaling 70 hours. The test dataset
contains four overlap conditions (i.e. 0%, 20%, 40%, and 60%). For
TS-ASR, we use the Libri2Mix-max clean dataset, which is similar
to the Libri2Mix-min except that mixture corresponds to the length
of the longest utterance.

B. Target Speech Encoder

Figure 1 presents the unified architecture, emphasizing the integra-
tion of pre-trained SSL models. This system aims to isolate the target-
speaker information from a mixture y, modeled as y = x+i, where i
represents the interference from other speakers and background noise
and x denotes the clean speech. The process utilizes an enrollment
utterance c, to identify the TS. The system is structured around two
main components: a unified target speech encoder that we describe
below and a task-oriented decoder, which we detail in the next
subsections.

The target speech encoder comprises an extractor and a speaker
encoder (SpkEnc), as shown in Fig. 1. SpkEnc employs an attentive
pooling (i.e., multi-head factorized attention pooling (MHFA) [7])
to compute speaker vector e by processing SSL features based on
enrollment speech, c. Subsequently, the extractor computes the target
speech feature, Zx, from the upstream model’s representations, h,
and the TS embedding, e, as Zx = Extractor(h, e). Note that, as
in SUPERB, h consists of the weighted sum of the output of the
Transformer layers of the SSL model. Different from other SUPERB
tasks, here SSL models are used twice in the downstream model
to process the enrollment c and speech mixture y. Different from
using a pre-trained speaker embedding extractor for the SpkEnc, our
architectural choice for the SpkEnc allows for future comparisons
with recent SSL schemes that handle mixture speech and enrollment
speech/embeddings together [32].

For the mixture encoder within the target speech encoder, as
shown in Fig. 1, a single BLSTM layer is used, while the target
extractor utilizes two BLSTM layers. The dimension of the BLSTM
layers is set to 512, except for the PVAD task, where it is 32.
This adjustment is based on preliminary PVAD experiments, which
showed no significant performance differences when using models
with larger dimensions. The fusion layer uses broadcast multiplication
to combine two features [16]. The MHFA is configured with four
heads and a compression layer with a dimension of 128. To align
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TABLE II
COMPARISON OF DIFFERENT SPEECH SELF-SUPERVISED MODELS FOR TS-SUPERB INCLUDING TSE, PSE, PVAD, AND TS-ASR DOWNSTREAM TASKS.

ADDITIONALLY, THE PERFORMANCE ON THE CORRESPONDING SS, ASR AND SV TASKS IS INCLUDED FOR COMPREHENSIVE EVALUATION.

Upstream TSE PSE PVAD TS-ASR (WER) Sep [37] ASR [10] SV [37]

SI-SDRi↑ SI-SDRi↑ FR↓ mAP↑ m. tss↑ w/ LM↓ w/o LM↓ SI-SDRi↑ WER↓ EER↓
data2vec Base [2] 9.43 10.36 4.22 0.945 0.967 33.83 40.51 9.95 4.94 3.51
HuBERT Base [3] 9.62 10.36 4.98 0.928 0.953 34.57 41.75 10.01 6.42 3.06
WavLM Base [4] 10.03 11.01 3.58 0.951 0.971 23.72 29.13 10.80 6.21 2.71
WavLM Base+ [4] 11.04 10.96 3.58 0.942 0.961 23.45 29.09 11.41 5.59 2.03
data2vec Large [2] 9.55 10.37 4.80 0.954 0.970 28.93 35.84 10.81 3.36 2.59
HuBERT Large [3] 9.03 9.76 4.25 0.954 0.973 25.10 31.88 10.95 3.62 2.94
WavLM Large [4] 10.47 11.34 3.67 0.966 0.980 17.97 22.62 11.87 3.44 2.30

with SUPERB, we keep SSL models frozen by default throughout
the training of all tasks (except when specifically mentioned).

C. Target Speech Extraction (TSE)

Task: TSE aims to estimate the speech of a TS from a multi-talker
mixture [16]. It can be used to evaluate both the generative and
speaker discrimination capabilities of SSL models.
Architecture: In addition to the aforementioned target speech en-
coder, TSE has a separate encoder that transfers the mixture y into a
sequence of features Zy . Subsequently, Zx are processed through a
non-linear activation function, such as ReLU, to compute the target
speech mask M, in the feature domain of Zy . Finally, the decoder
reconstructs the masked features Zs = M ⊙ Zy back into the time
domain, resulting in the target speech signal, x̂ = TSEdecoder(Zs).
The negative scale-invariant signal-to-noise ratio (SI-SNR) is used
as the training objective. Regarding the implementation, we employ
Conv1D and DeConv1D for the encoder and decoder, respectively,
setting the kernel size to 1024, stride to 320, and the number of filters
to 512.
Evaluation: We evaluate TSE performance in terms of scale-invariant
signal-to-distortion ratio improvement (SI-SDRi) measured on the
Libri2Mix-min, as detailed in Section III-A.

D. Personalized Speech Enhancement (PSE)

Task: Different from TSE, which focuses on processing highly
overlapped speech, PSE is more concerned with extracting the TS’s
voice in conversational scenarios with sparsely overlapped ratios and
background noise. The PSE task probes the generative and speaker
discrimination capabilities of SSL models with noisy multi-talker
inputs.
Architecture: The downstream model architecture is the same as
for TSE.
Evaluation: We use the SparseLibri2Mix dataset, described in Sec-
tion III-A, to evaluate the PSE task. The final performance is mea-
sured in terms of SI-SDRi, perceptual evaluation of speech quality
(PESQ), short-time objective intelligibility (STOI), and Failure rate
(FR) [38], where FR is defined as the percentage of test samples with
SDRi below 1 dB.

E. Personalized VAD (PVAD)

Task: PVAD is designed to detect the voice activity of a TS in a
mixture at frame level [19]. Unlike VAD, which simply detects the
presence of any speech or not, PVAD aims to detect the TS’s voice
in a multi-talker recording.
Architecture: The PVAD decoder employs a classification layer (i.e.,
a linear layer with softmax activation function) to predict frame-level
labels with cross-entropy loss between actual labels. Each utterance
is annotated with frame-level labels covering three categories, i.e.,
target speaker speech (tss), non-target speaker speech (ntss), and
none-speech (ns), such as noise and silence.

Evaluation: The dataset used for PVAD aligns with that for PSE, i.e.,
noisy SparseLibri2Mix. We measure performance using mean average
precision (mAP) and mAP of target speaker speech (m. tss) [19].

F. Target-speaker ASR (TS-ASR)

Task: TS-ASR transcribes target-speaker speech into words given
the multi-talker mixture. This task serves to evaluate both the
linguistic and speaker discrimination capabilities of SSL models.
Architecture: The decoder within TS-ASR employs a single BLSTM
layer with 512 dimensions. It estimates the probability of charac-
ters using the connectionist temporal classification (CTC) loss. The
trained model is decoded with the official LibriSpeech 4-gram LM,
making use of KenLM [39] and the Flashlight toolkit [40].
Evaluation: The performance of TS-ASR is evaluated on the
Libri2Mix-max dataset. The evaluation metric is the word error
rate (WER).

G. Multi-task Learning

All TS-SUPERB tasks share the same architecture for the target
speech encoder. To leverage the potential mutual information between
different tasks and further enhance the learned features, we explore
a multi-task learning framework for joint optimization across tasks.
Here we investigate multi-task learning between two tasks (TSE+TS-
ASR and PSE+PVAD). The optimization objective can be formulated
as L = αLi + (1 − α)Lj , where 0 ≤ α ≤ 1 denotes the task
weight. Li and Lj are the loss functions of the two tasks, i.e., (i, j) ∈
{(TSE,TS-ASR), (PSE, PVAD)}.

IV. RESULTS AND ANALYSIS

A. Performance comparison of various SSL models

The results of evaluating upstream models on TS-SUPERB are
presented in Table II. Additionally, to explore the correlations be-
tween tasks, we also include results from related ASR, SV, and
Sep tasks following implementation in S3PRL, within the same
table. Specifically, for PSE, we report the averaged SI-SDRi and
FR metrics across four different overlap ratio conditions. Overall, no
single SSL model consistently leads across all tasks. Meanwhile, the
WavLM Base+ and Large models exhibit competitive performance
in TS tasks, likely due to their use of a training data augmentation
strategy, which leverages mixed utterances from multiple speakers,
making them well-suited for the multi-speaker and noisy conditions
of TS-SUPERB.

In detail, WavLM Base shows the best performance in the PVAD
task, followed by data2vec Base and WavLM Base+ among all BASE
models, though the lead is marginal. For TS-ASR, the Large model
significantly outperforms the Base model, attributed to its stronger
modeling of phoneme-related hidden units during pre-training. In de-
noising tasks (PSE and TSE), WavLM models obviously outperform
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Fig. 2. The weight distribution of SSL layers. Note that the 0th layer denotes
the input of the 1st Transformer encoder layer.

Fig. 3. The Spearman’s rank correlation between tasks.

others, possibly because of denoising strategies incorporated during
their pre-training stage as data augmentation.

Note that this paper aims to compare SSL models over various TS
tasks and not to achieve top performance on these tasks. However,
for reference, we compared the results of Table II with prior TSE
and TS-ASR works. SSL-based models demonstrate comparable
performance with state-of-the-art systems trained from scratch like
TD-SpeakerBeam [41], which achieves SI-SDRi of 13.03 dB and
10.71 dB on the TSE and PSE tasks, respectively, suggesting the
promising applications of SSL models in denoising. However, the
performance of the TS-ASR systems is significantly behind that
reported in [23], which employed a pre-trained speaker encoder,
conditioned the pre-trained SSL model on the TS embeddings, and
performed full fine-tuning of the SSL model, resulting in a WER of
12.32 % with a different configuration for enrollment speech. This
indicates the potential for future improvement and investigation.

B. Layer-wise and task correlation analysis

The layer weights distributions of the WavLM Base+ model across
various tasks are shown in Fig. 2. In TS tasks, the contributions of
the bottom layers in both the extractor and the SpkEnc are more
significant than for tasks such as SV, Sep, and ASR. SpkEnc’s weight
distribution resembles that in SV, indicating the bottom layer of the
Base model contains rich speaker-related information. In addition,
both the TS-ASR extractor and ASR show a peak at the 10th layer,
suggesting that semantic information is encoded in the top layers.
However, unlike ASR, TS-ASR also requires information from the
lower layers to identify the TS in the mixture.

Furthermore, we investigate the correlations between tasks within
TS-SUPERB and related tasks to verify if task relationships con-
firm existing hypotheses in speech processing. After converting all
metrics to a higher-is-better format, we then calculate Spearman’s
correlation coefficients among all tasks [42]. As illustrated in Fig. 3,
all TS-SUPERB tasks exhibit a strong correlation with Sep. One

TABLE III
INVESTIGATION OF JOINT-TRAINING OF TSE AND TS-ASR ON THE

LIBRI2MIX-MAX CLEAN DATA.

Model SI-SDRi↑ STOI(%)↑ PESQ↑ WER↓
TSE+TS-ASR 11.74 90.60 2.14 33.26
- Only TSE 11.16 89.40 1.97 -
- Only TS-ASR - - - 29.09
TSE+TS-ASR [FT] 12.70 91.66 2.24 26.29

TABLE IV
PERFORMANCE ON NOISY SPARSELIBRI2MIX. ALL RESULTS ARE

AVERAGES OF FOUR DIFFERENT OVERLAP RATIOS (I.E. 0%, 20%, 40%,
60%) TESTING DATA. #PARAMS DENOTES THE TRAINABLE PARAMETERS.

Model #Params SI-SDRi↑ mAP↑
PSE+PVAD 7.3 M 11.09 0.962
- Only PSE 7.3 M 10.96 -
- Only PVAD 0.7 M - 0.942

PSE+PVAD [FT] 101M 11.49 0.961

possible reason is that these tasks share a similar goal: extracting
specific speaker information from mixed speech signals. SV shows
a high correlation with the TS tasks, except for PVAD, suggesting
that PVAD does not require strict speaker representations. TSE, PSE,
and TS-ASR show a high correlation, whereas PVAD has a weaker
correlation with TSE and PSE but a stronger connection with TS-
ASR and ASR. One possible explanation is that PVAD, TS-ASR, and
ASR focus on frame-level feature processing, which does not require
the fine-grained temporal resolution needed by TSE and PSE. It is
observed that TS-ASR has a surprisingly weak correlation with ASR.
This could be attributed to the additional requirement of TS-ASR to
separate the mixture speech, which complicates the task using the
simple ASR decoder module, making it challenging to simultaneously
deal with both tasks effectively.

C. Analysis of multi-task learning and fine-tuning

To investigate how the target speech processing tasks complement
each other, we evaluate the performance of joint-training TSE and
TS-ASR in Table III and PSE with PVAD in Table IV, respectively.
The first experiments are conducted using Libri2Mix-max, while the
second utilizes noisy SparseLibri2Mix. The α is set to 0.5 for all
experiments. WavLM Base+ was used for the upstream model.

When jointly training TSE and TS-ASR tasks (Table III), the
system achieves improved TSE performance in terms of SI-SDRi,
STOI, and PESQ, compared to TSE alone but worse WER than
standalone TS-ASR. The fine-tuning of the whole system results in
further improvement in all metrics.

In Table IV, the jointly optimized model improves in both PSE and
PVAD performance. This indicates that speaker detection and denois-
ing tasks can mutually benefit each other. Notably, training with an
unfrozen SSL model leads to further improvements, especially for
the TSE+TS-ASR task.

V. CONCLUSION

In this paper, we propose a new benchmark, named TS-SUPERB,
for target-speaker speech processing, comprising four new tasks:
TSE, PSE, TS-ASR, and PVAD. We further explore the multi-
task learning within those tasks to utilize their mutual information.
Through the comprehensive experiments with seven SSL models
evaluated on Libr2Mix and noisy SparseLibri2Mix datasets, our
results demonstrate the uniqueness of target speech processing tasks
as their performances cannot be simply deduced from SV, ASR, and
Sep tasks alone.
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“Target speech extraction with pre-trained self-supervised learning mod-
els,” in ICASSP, 2024.

[23] Z. Huang, D. Raj, P. Garcı́a, and S. Khudanpur, “Adapting self-
supervised models to multi-talker speech recognition using speaker
embeddings,” in ICASSP, 2023, pp. 1–5.

[24] J. Peng, O. Plchot, T. Stafylakis, L. Mosner, L. Burget, and J. H.
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