
Delayed Fusion: Integrating Large Language Models into
First-Pass Decoding in End-to-end Speech Recognition

Takaaki Hori1, Martin Kocour2∗, Adnan Haider1, Erik McDermott1, Xiaodan Zhuang1

1Apple, 2Brno University of Technology

Abstract—This paper presents an efficient decoding approach for end-
to-end automatic speech recognition (E2E-ASR) with large language
models (LLMs). Although shallow fusion is the most common approach
to incorporate language models into E2E-ASR decoding, we face two
practical problems with LLMs. (1) LLM inference is computationally
costly. (2) There may be a vocabulary mismatch between the ASR model
and the LLM. To resolve this mismatch, we need to retrain the ASR
model and/or the LLM, which is at best time-consuming and in many
cases not feasible. We propose delayed fusion, which applies LLM scores
to ASR hypotheses with a delay during decoding and enables easier
use of pre-trained LLMs in ASR tasks. This method can reduce not
only the number of hypotheses scored by the LLM but also the number
of LLM inference calls. It also allows re-tokenizion of ASR hypotheses
during decoding if ASR and LLM employ different tokenizations. We
demonstrate that delayed fusion provides improved decoding speed and
accuracy compared to shallow fusion and N-best rescoring using the
LibriHeavy ASR corpus and three public LLMs, OpenLLaMA 3B & 7B
and Mistral 7B.

Index Terms—speech recognition, large language model, decoding,
delayed fusion

I. INTRODUCTION

Large language models (LLMs) have shown their tremendous
power of language understanding and generation in various do-
mains [1]–[4]. LLMs, including many publicly available ones [5], are
typically Transformer models [6] with billions of parameters trained
on vast amounts of text data. Towards effectively exploiting LLMs
for ASR, researchers are very actively exploring various LLM-based
ASR models and decoding approaches [7]–[9].

Most ASR systems employ an external language model to improve
recognition accuracy. If similarly applying an LLM using conven-
tional shallow fusion, we face two practical problems. (1) LLM
inference is computationally demanding, making it costly to directly
apply shallow fusion during beam search, which requires many LLM
inference calls, especially in frame-synchronous decoding. (2) There
may be a vocabulary mismatch between ASR model and LLM. LLMs
typically have a much larger vocabulary compared to end-to-end ASR
models. To apply shallow fusion, ASR model and LLM need to have
identical vocabularies. To match one vocabulary to another, either the
ASR model or the LLM needs to be retrained. However, training an
ASR model on the LLM vocabulary leads to an out-of-vocabulary
problem, since the paired data used for training ASR models is
limited and does not cover LLM vocabulary sufficiently well. On the
other hand, training an LLM on the ASR vocabulary is expensive,
time consuming and in many cases infeasible. Furthermore, publicly
available pre-trained LLMs cannot be easily adapted to different
vocabularies.
N -best rescoring is a possible solution to relieve the above

problems: first-pass decoding generates N -best hypotheses, and then
a second-pass rescores the hypotheses using an LLM, after re-
tokenization. The rescoring pass is not very expensive if a graphics
processing unit (GPU) is available, since rescoring requires only one

*This work was done during an internship at Apple.

LLM inference call when first-pass hypotheses are batched. However,
N needs to be large enough to make rescoring effective. Especially
for long utterances, it is difficult to generate short N -best lists that
include the correct hypothesis. Increasing the list size imposes a
big burden on the first-pass decoding, where more computation and
memory are needed for a wider beam, especially when using an auto-
regressive E2E model that predicts the next tokens based on all the
previous tokens.

We propose delayed fusion, where we apply LLM scores during
decoding but only after pruning, which dramatically reduces the
number of partial hypotheses that need to be scored by the LLM.
At the same time, we can wait until a partial hypothesis reaches
the end of word to handle different tokenizations between ASR and
LLM. Once the decoder detects the end of a word, it re-tokenizes
the word, computes the LLM score and adds it to the current partial
hypothesis score. This way, LLM scores are incorporated from an
early stage of the first-pass decoding, reducing search errors otherwise
not recoverable by N -best rescoring.

The contributions of this work are:
• We propose a novel method for efficient LM fusion, which

allows us to (1) easily compare different LLMs on ASR tasks,
(2) investigate the effect of prompting LLMs in ASR, and (3)
use as a baseline system when exploring advanced LLM-based
ASR models.

• We provide experimental results on ASR accuracy and decoding
speed with three public domain LLMs, OpenLLaMA 3B &
7B [10], [11] and Mistral 7B [4], showing that (1) Delayed
LLM fusion is fast enough compared to standard neural language
model (NLM) fusion, allowing us to obtain improved ASR
accuracy from LLMs in the same decoding time, and that
(2) Delayed LLM fusion provides significant WER reduction
compared to N -best rescoring with LLMs.

II. RELATED WORK

There are different types of E2E-ASR systems [12] and many of
them employ an external LM to improve recognition accuracy [13]–
[15]. Some LM fusion techniques require retraining of the ASR model
to further improve accuracy and adaptability to other domains [16]–
[18]. Unlike such techniques, this paper focuses on improving shallow
fusion based decoding, which combines E2E-ASR and LM without
retraining or fine-tuning.

In standard shallow fusion decoding, ASR model and LM need to
use the same tokenization and vocabulary. This limitation prevents us
from easily applying LLM shallow fusion. Prior work has investigated
delayed LM application using on-the-fly lattice rescoring [19], [20]
for hybrid ASR and shallow fusion of a character-based E2E model
and a word-based LM for end-to-end ASR, where a space token
is used to trigger word-based LM scoring [21], [22]. However, these
approaches do not have a mechanism to control the delay for efficient
shallow fusion. With delayed fusion, we can adjust the timing of LMIC

A
SS

P
20

25
 -

20
25

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

co
us

tic
s,

Sp
ee

ch
 a

nd
 S

ig
na

l P
ro

ce
ss

in
g

(I
C

A
SS

P)
 |

97
9-

8-
35

03
-6

87
4-

1/
25

/$
31

.0
0

©
20

25
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

A
SS

P4
96

60
.2

02
5.

10
89

03
91

Authorized licensed use limited to: Brno University of Technology. Downloaded on June 04,2025 at 14:38:56 UTC from IEEE Xplore. Restrictions apply.

fusion considering the computation vs. accuracy trade-off as well as
tokenization mismatches. Moreover, unlike LLM rescoring [23]–[26]
or redecoding [27], [28] approaches, delayed fusion can be used in
streaming scenarios, similarly to standard shallow fusion.

A recent work related to our approach is SALSA [9] since it can
handle tokenization mismatches during decoding. However, SALSA
integrates pre-trained ASR and LLM by combining their state vectors
using additional projection layers, and thus, it needs to train those
layers using paired data before decoding. On the other hand, delayed
fusion integrates ASR and LLM by combining their scores, and
therefore, it does not require any extra layers or training steps.

III. METHOD

A. Delayed fusion concept

Delayed fusion computes LM scores for partial hypotheses during
decoding as in shallow fusion. However, such scoring is done after
pruning, enabling flexible timing of fusion balancing the trade-off
between accuracy and computational cost. General auto-regressive
decoding with delayed fusion is described in Algorithm 1.

Algorithm 1 Auto-regressive decoding with delayed fusion
1: H0 ← {<s>}
2: SE2E(<s>)← SLM (<s>)← 0
3: for t = 1, 2, . . . , T do
4: Ht ← EXTEND(Ht−1)
5: SE2E ← E2ESCORE(Ht, SE2E)
6: Ht ← PRUNE(Ht, SE2E , SLM ,K)
7: if FUSABLE(H0:t, t) = TRUE then,
8: SLM ← LMSCORE(Ht, SLM)
9: end if

10: end for
11: ĤT ← FINALIZE(HT)
12: SLM ← LMSCORE(ĤT , SLM)
13: ĥ← argmaxh∈ĤT

(SE2E(h) + SLM (h))

The method first creates an initial hypothesis list with begin-of-
sentence token <s> (line 1) and initializes E2E model score list
SE2E(<s>) and LM score list SLM (<s>) (line 2). For each step
t, it extends the previous hypothesis list Ht−1 to get the current
hypothesis list Ht, and computes E2E model scores SE2E(h) for
h ∈ Ht (lines 4–5). Then, it applies pruning for Ht to keep the
top K hypotheses based on SE2E and SLM (line 6). If the fusion
condition FUSABLE(H0:t, t) is met,it computes LM scores SLM (h)
for h ∈ Ht (lines 7–9). After T steps, it updates the hypothesis list
HT , appending the end-of-sentence token </s> to each h in HT

if necessary (line 11), and also computes LM scores SLM for HT

(line 12). Finally, it selects the best hypothesis ĥ based on SE2E and
SLM (line 13).

Algorithm 1 shows the abstract-level decoding steps. In frame-
synchronous decoding, t represents a time frame. For CTC decoding,
SE2E(h) must have two elements for alignment paths ending with
blank and non-blank labels respectively, which are updated according
to the CTC rule [29] in E2ESCORE(·). In label-synchronous decod-
ing, t represents the number of labels generated for each hypothesis,
where all existing hypotheses have the same length. In addition, the
algorithm requires a function that decides whether to exit the for loop
or not, for example checking whether all existing hypotheses end with
</s>. This step is omitted from the algorithm for simplicity.

Thus, the algorithm is agnostic to the decoding strategy, be it
frame-synchronous or label-synchronous decoding, as long as it is

auto-regressive. The key step is the LM score computation in line
8, which is performed after pruning. The timing can be controlled
by the function FUSABLE(·) to reduce the number of LM calls for
efficiency.

B. Delayed fusion with LLM

If the ASR model and the LLM were trained with different
vocabularies, we need to re-tokenize hypotheses before LLM scoring.
However, tokenization may be incorrect for incomplete hypotheses.
Accordingly, we determine a tokenizable sub-sequence as the longest
prefix that ends with a word-end token occurring right before a
word-begin token, as shown in Fig. 1. Then, the sequence is re-
tokenized using the LLM tokenizer. If a standard SentencePiece
tokenizer [30] is used, each word is tokenized into a unique token
sequence. Therefore, the sequence can be re-tokenized into a unique
and consistent token sequence, for which an LLM score can be
computed correctly.

Fig. 1. Re-tokenization for delayed LLM fusion.

With delayed fusion, we can call the LLM at any time dur-
ing decoding. For efficient LLM computation, we propose (1)
shortest-hypothesis fusion and (2) fixed-interval fusion. The shortest-
hypothesis fusion calls the LLM only when the length of the shortest
re-tokenized sequence has increased. The fusion condition is defined
as

FUSABLE(H0:t, t) =

{
TRUE if φ(H̄t−1) < φ(H̄t)
FALSE otherwise

,

where H̄t is a list of re-tokenized sequences obtained from Ht or
identical to Ht if there is no tokenization mismatch. φ(H̄t) returns
the length of the shortest sequence in H̄t. This method allows us to
keep the number of LLM calls to at most the number of tokens in
the shortest hypothesis.

The fixed-interval fusion calls the LLM at a fixed frame (or label)
interval using

FUSABLE(H0:t, t) =

{
TRUE if H̄t−I ̸= H̄t ∧ t mod I = 0
FALSE otherwise

,

where I denotes a pre-defined fixed interval. Increasing I reduces
the number of LLM calls. Consequently, a larger I improves the
decoding speed but increases the fusion delay, which may cause
accuracy degradation. At the extreme, if FUSABLE(·) always returns
FALSE, the algorithm is equivalent to N -best rescoring, which in turn
can be seen as a special case of delayed fusion.

For efficient LLM fusion, we compute LLM scores for all the
current hypotheses at once, where we use hypothesis batching and

Authorized licensed use limited to: Brno University of Technology. Downloaded on June 04,2025 at 14:38:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. LLM score computation in decoding.

a key-value cache to take full advantage of GPU acceleration. Fig.
2 shows how to compute LLM scores at the (j + 1)-th LLM call.
The LM scores have already been computed for at least M̂j tokens
in the previous step j, where M̂j denotes the length of the shortest
sequence at step j. This means that we can use the key-value cache
and the LLM scores for the preceding sequence v

(n)
1 , . . . , v

(n)

M̂j
in

computing new scores for all hypotheses. The new LLM scores at
step j + 1 can be obtained with

SLM (h
(n)
j+1) ≈ logPLM (v

(n)
1 , ..., v

(n)

M̂j
)

+ logPLM (v
(n)

M̂j+1
, ..., v

(n)

M
(n)
j+1

|v(n)
1 , ..., v

(n)

M̂j
).

IV. EXPERIMENTS

A. Conditions

We conducted several experiments on the LibriHeavy corpus [31],
which includes 50k hours of English audio books. We trained a CTC-
AED model [32], [33] using all three training subsets, i.e., small,
medium, and large subsets, and also trained an in-domain NLM using
formatted transcripts including casing and punctuation. The CTC-
AED model had an encoder network with a Conv2D module followed
by 12 Conformer blocks, a decoder network with 3 unidirectional
Transformer blocks, and a CTC output layer. In the Conv2D module,
80-dimensional Mel-filter bank features obtained every 10 msec were
down-sampled by a factor of 6. We employed multi-head attention
of 8 heads with 512 dimensions in total. The feed-forward network
had one hidden layer of 2,048 units with ReLU activations. The in-
domain NLM had 9 Transformer blocks with 256 dimensions and a
shared embedding layer for input and output tokens. The vocabulary
size was 6K for both CTC-AED model and NLM, corresponding to
the set of word pieces obtained from the LibriHeavy transcripts using
the SentencePiece tokenizer [30]. The number of parameters of the
CTC-AED model and the NLM were 101M and 9M, respectively.
We applied SpecAugment in model training but did not use speed
perturbation as in [31].

We also employed three public domain LLMs: OpenLLaMA 3B
v2, OpenLLaMA 7B v2 [11], and Mistral 7B v0.1 [4], where the
vocabulary size was 32K. We evaluated the proposed method in
two decoding modes, CTC prefix beam search [21] and joint CTC-
attention decoding [32], [34], where the former is frame-synchronous
decoding and the latter is label-synchronous decoding. Although the
frame-synchronous decoding is streamable, we used full utterance
context in encoding to simplify the experiments. We used language

TABLE I
WORD ERROR RATE VS. REAL-TIME FACTOR ON LIBRIHEAVY

BENCHMARKS1 . DELAYED FUSION (DF) WAS USED FOR THE LLMS,
WHILE SHALLOW FUSION (SF) WAS USED FOR THE IN-DOMAIN NLM.

Decoding LM fusion lh-clean lh-other RTF

- 3.47 6.41 0.018
CTC prefix SF w/ NLM 9M 3.15 5.95 0.082
beam DF w/ NLM 9M 3.16 5.93 0.066
search DF w/ OpenLLaMA 3B 3.05 5.68 0.115

DF w/ OpenLLaMA 7B 3.01 5.67 0.141
DF w/ Mistral 7B 3.02 5.63 0.142

- 2.98 5.64 0.051
CTC- SF w/ NLM 9M 2.94 5.61 0.091
attention DF w/ NLM 9M 2.96 5.59 0.099
decoding DF w/ OpenLLaMA 3B 2.86 5.35 0.146

DF w/ OpenLLaMA 7B 2.84 5.29 0.170
DF w/ Mistral 7B 2.80 5.22 0.169

model weights in shallow and delayed fusion, which were tuned on
the LibriHeavy dev set for each LM. Evaluation metrics are word
error rate (WER) and real-time factor (RTF). Decoding time was
measured on an Intel Xeon (Skylake IBRS) CPU @ 2.4GHz with an
NVIDIA V100 GPU.

B. Results

Table I shows WERs and RTFs for LibriHeavy test-clean (“lh-
clean”) and test-other (“lh-other”) sets in different decoding condi-
tions, where we compare the decoding modes, shallow fusion (SF)
and delayed fusion (DF), and in-domain and large LMs, setting
the beam size to 10. To measure the RTF, we used only the first
200 utterances in “lh-other”. CTC prefix beam search without LM
fusion is the baseline, which has the best RTFs, but high WERs. The
WERs can be reduced by shallow fusion with the in-domain NLM,
but RTF nonetheless increases significantly, even with the NLM
probabilities computed on GPU. This is mainly due to frequent NLM
calls during frame-synchronous decoding. We then evaluated delayed
fusion using the shortest hypothesis approach described earlier. With
the in-domain NLM, with no tokenization mismatch, delayed fusion
shows comparable WERs with shallow fusion, while reducing RTF
from 0.082 to 0.066. For the three LLMs, with the tokenization
mismatch handled during decoding, delayed fusion produces better
WERs than the baseline or NLM shallow fusion. Although the RTF
increases for the LLMs to 0.115, 0.141, and 0.142, these are still
acceptable for real-time decoding. With CTC-attention decoding, we
see substantial improvements thanks to LLM fusion, although it does
require more computation due to the use of the attention decoder and
label-synchronous CTC. Note that, in label-synchronous decoding,
delayed fusion based on the shortest hypothesis does not outperform
shallow fusion in decoding speed (see SF vs. DF w/ NLM) because
it does not reduce the number of LM calls. However, delayed fusion
still has the benefit of handling mismatched tokenization. Since the
performance gap between LLMs is small, we report only the results
with OpenLLaMA 3B model in the following.

Table II compares delayed fusion strategies, the shortest- hypoth-
esis and fixed-interval methods, with N-best rescoring. Both strate-
gies achieve better WERs than the baseline and N-best rescoring.
Moreover, by changing the interval I , we can choose a suitable

1The WERs presented in this paper cannot strictly be compared with those
in [31] since our CTC-AED model is not compatible with their model in
terms of vocabulary size, decoder architecture, and data augmentation.

Authorized licensed use limited to: Brno University of Technology. Downloaded on June 04,2025 at 14:38:56 UTC from IEEE Xplore. Restrictions apply.

TABLE II
COMPARISON OF DELAYED FUSION APPROACHES AND N-BEST

RESCORING IN CTC PREFIX BEAM SEARCH. FOR FIXED-INTERVAL
FUSION, WE TESTED INTERVALS OF I = 16, 32, AND 64, WHICH

CORRESPOND TO 0.96S, 1.92S, AND 3.84S, RESPECTIVELY, SINCE ONE
ENCODER FRAME IS 60 MS.

SF w/ NLM lh-clean lh-other RTF

Baseline 3.47 6.41 0.018
N-best resc. (N=10) 3.19 6.03 0.029
Fixed-int. DF (I=64) 3.09 5.78 0.041
Fixed-int. DF (I=32) 3.09 5.73 0.047
Fixed-int. DF (I=16) 3.08 5.73 0.063
Shortest-hyp. DF 3.05 5.68 0.115

Baseline w/ NLM ✓ 3.15 5.95 0.082
N-best resc. (N=10) ✓ 3.07 5.79 0.089
Fixed-int. DF (I=64) ✓ 3.05 5.70 0.099
Fixed-int. DF (I=32) ✓ 3.05 5.68 0.107
Fixed-int. DF (I=16) ✓ 3.05 5.67 0.122
Shortest-hyp. DF ✓ 3.04 5.65 0.174

operating point considering the WER-RTF trade-off. We also evaluate
the combination of LLM delayed fusion with NLM shallow fusion,
where the LM weight was evenly distributed across the two LMs
during decoding, but the final hypothesis was selected with only the
E2E and LLM scores (in line 13 of Algorithm 1). The combined
fusion effectively reduces the pruning error due to the delay, although
it requires a certain overhead for the NLM.

Figure 3 compares delayed fusion and N-best rescoring perfor-
mance for different beam sizes in CTC prefix beam search. The
results indicate that delayed fusion, (e) & (f), achieves lower WERs
and RTFs than N-best rescoring, (c) & (d).

Fig. 3. Delayed fusion vs. N -best rescoring for different beam sizes 5, 10,
15, and 20. WER and RTF were measured on “lh-other”.

Finally, Table III compares shallow and delayed fusion using the
same LLM. For shallow LLM fusion, we trained another CTC-AED
model from scratch using the LLM tokenizer, which had a 32K
vocabulary. In CTC prefix beam search, delayed fusion (shortest
hyp.) achieves a good accuracy comparable to or slightly better than
shallow fusion, while delayed fusion is 2.2 times faster. In CTC-
attention decoding, delayed fusion shows a comparable WER for “lh-
clean” but a slightly worse WER for “lh-other”, although it still has

TABLE III
COMPARISON WITH LLM SHALLOW FUSION, WHERE LLM IS

OPENLLAMA 3B. FOR SHALLOW LLM FUSION, WE TRAINED ANOTHER
CTC-AED MODEL WITH LLAMA TOKENIZER THAT VOCABULARY SIZE

WAS 32,000.

Decoding ASR vocab. LM fusion lh-clean lh-other RTF

CTC prefix 6K - 3.47 6.41 0.018
beam 32K - 3.61 6.63 0.027
search 6K DF w/ LLM 3.05 5.68 0.115

32K SF w/ LLM 3.05 5.75 0.257

CTC- 6K - 2.98 5.64 0.051
attention 32K - 3.03 5.62 0.062
decoding 6K DF w/ LLM 2.86 5.35 0.146

32K SF w/ LLM 2.86 5.19 0.169

a certain speed benefit. However, the advantage of delayed fusion is
that it can avoid retraining of ASR models depending on the LLM.

In summary, LLM delayed fusion achieves 4 - 13% WER reduction
(WERR) from the baseline and 3 - 7% WERR from NLM shallow
fusion (Table I). Furthermore, it provides lower WERs than N -
best rescoring and NLM shallow fusion for the same decoding time
(Fig. 3). However, NLM shallow fusion followed by N -best LLM
rescoring (plot (d) in Fig. 3) is competitive to delayed fusion ((e) &
(f)), where the relative WER difference is around 1 - 3 %. This is
a small improvement, but an important advantage of delayed fusion
is that it can be used for streaming decoding. In some applications,
such as live captioning, lattice/N-best rescoring is not an option, or
can have a negative impact on the user experience; delayed fusion is
applicable to a wider range of ASR applications.

V. CONCLUSIONS

In this paper, we proposed delayed fusion, which applies LLM
scores to first-pass ASR hypotheses with a delay during decoding
and allows us to easily use pre-trained LLMs in ASR tasks. This
method can reduce not only the number of hypotheses scored by
the LLM but also the number of LLM inference calls. We can re-
tokenize ASR hypotheses during decoding to compute LLM scores if
ASR model and LLM employ different tokenizations. We conducted
experiments on the LibriHeavy corpus, applying delayed fusion with
three public domain LLMs. We demonstrated that (1) Delayed LLM
fusion is fast enough compared to standard neural language model
(NLM) fusion and (2) Delayed LLM fusion provides lower WERs
than N-best LLM rescoring and standard NLM fusion.

Future work will include extensive evaluation of delayed fusion
using different datasets, different metrics, e.g., GPU memory con-
sumption, and E2E architectures including RNN Transducers [35].

VI. ACKNOWLEDGEMENTS

We thank David Rybach, Roger Hsiao, Dogan Can, and Pawel
Swietojanski for useful suggestions on this work.

REFERENCES

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “GPT-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[2] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“LLaMA: Open and efficient foundation language models,” arXiv
preprint arXiv:2302.13971, 2023.

[3] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “PaLM: Scal-
ing language modeling with pathways,” Journal of Machine Learning
Research, vol. 24, no. 240, pp. 1–113, 2023.

Authorized licensed use limited to: Brno University of Technology. Downloaded on June 04,2025 at 14:38:56 UTC from IEEE Xplore. Restrictions apply.

[4] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier et al.,
“Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

[5] S. Minaee, T. Mikolov, N. Nikzad, M. Chenaghlu, R. Socher, X. Am-
atriain, and J. Gao, “Large language models: A survey,” arXiv preprint
arXiv:2402.06196, 2024.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. NIPS,
Los Angeles, CA, Dec. 2017, pp. 5998–6008.

[7] P. K. Rubenstein, C. Asawaroengchai, D. D. Nguyen, A. Bapna, Z. Bor-
sos, F. d. C. Quitry, P. Chen, D. E. Badawy, W. Han, E. Kharitonov
et al., “AudioPaLM: A large language model that can speak and listen,”
arXiv preprint arXiv:2306.12925, 2023.

[8] J. Wu, Y. Gaur, Z. Chen, L. Zhou, Y. Zhu, T. Wang, J. Li, S. Liu, B. Ren,
L. Liu et al., “On decoder-only architecture for speech-to-text and large
language model integration,” in Proc. IEEE ASRU, 2023, pp. 1–8.

[9] A. Mittal, D. Prabhu, S. Sarawagi, and P. Jyothi, “SALSA: Speedy asr-
llm synchronous aggregation,” in Proc. Interspeech, Kos, Greece, Sep.
2024, pp. 3485–3489.

[10] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “LLaMA
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[11] X. Geng and H. Liu, “OpenLLaMA: An open reproduction of LLaMA,”
May 2023. [Online]. Available: https://github.com/openlm-research/
open llama

[12] R. Prabhavalkar, T. Hori, T. N. Sainath, R. Schlüter, and S. Watanabe,
“End-to-end speech recognition: A survey,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 2023.

[13] T. Hori, S. Watanabe, Y. Zhang, and W. Chan, “Advances in joint CTC-
attention based end-to-end speech recognition with a deep CNN encoder
and RNN-LM,” in Proc. Interspeech, Aug. 2017.

[14] S. Toshniwal, A. Kannan, C.-C. Chiu, Y. Wu, T. N. Sainath, and
K. Livescu, “A comparison of techniques for language model integration
in encoder-decoder speech recognition,” in Proc. IEEE SLT, Athens,
Greece, Dec. 2018, pp. 369–375.

[15] W. Zhou, Z. Zheng, R. Schlüter, and H. Ney, “On language model
integration for RNN transducer based speech recognition,” in Proc. IEEE
ICASSP, Singapore, May 2022, pp. 8407–8411.

[16] A. Sriram, H. Jun, S. Satheesh, and A. Coates, “Cold fusion: Training
seq2seq models together with language models,” in Proc. Interspeech,
Hyderabad, India, Sep. 2018, pp. 387–391.

[17] F. Stahlberg, J. Cross, and V. Stoyanov, “Simple fusion: Return of the
language model,” in WMT 2018, Belgium, Brussels, Oct. 2018, pp. 204–
211.

[18] Z. Meng, S. Parthasarathy, E. Sun, Y. Gaur, N. Kanda, L. Lu, X. Chen,
R. Zhao, J. Li, and Y. Gong, “Internal language model estimation for
domain-adaptive end-to-end speech recognition,” in Proc. IEEE SLT,
Shenzhen, China, Dec. 2020, pp. 243–250.

[19] T. Hori, C. Hori, Y. Minami, and A. Nakamura, “Efficient WFST-based
one-pass decoding with on-the-fly hypothesis rescoring in extremely
large vocabulary continuous speech recognition,” IEEE Transactions on
audio, speech, and language processing, vol. 15, no. 4, pp. 1352–1365,
2007.

[20] H. Sak, M. Saraclar, and T. Güngör, “On-the-fly lattice rescoring for real-
time automatic speech recognition,” in Proc. Interspeech, Sep. 2010, pp.
2450–2453.

[21] A. Y. Hannun, A. L. Maas, D. Jurafsky, and A. Y. Ng, “First-pass large
vocabulary continuous speech recognition using bi-directional recurrent
DNNs,” Dec. 2014, arXiv:1408.2873.

[22] T. Hori, J. Cho, and S. Watanabe, “End-to-end speech recognition with
word-based RNN language models,” in Proc. IEEE SLT, Athens, Greece,
Dec. 2018, pp. 389–396.

[23] H. Huang and F. Peng, “An empirical study of efficient ASR rescoring
with transformers,” arXiv preprint arXiv:1910.11450, 2019.

[24] L. Xu, Y. Gu, J. Kolehmainen, H. Khan, A. Gandhe, A. Rastrow, A. Stol-
cke, and I. Bulyko, “RescoreBERT: Discriminative speech recognition
rescoring with BERT,” in Proc. IEEE ICASSP, Singapore, May 2022,
pp. 6117–6121.

[25] W. R. Huang, C. Allauzen, T. Chen, K. Gupta, K. Hu, J. Qin, Y. Zhang,
Y. Wang, S.-Y. Chang, and T. N. Sainath, “Multilingual and fully non-
autoregressive asr with large language model fusion: A comprehensive
study,” in Proc. IEEE ICASSP. IEEE, 2024, pp. 13 306–13 310.

[26] T. Udagawa, M. Suzuki, G. Kurata, N. Itoh, and G. Saon, “Effect and
analysis of large-scale language model rescoring on competitive asr
systems,” in Proc. Interspeech, Incheon, Korea, Sep. 2022, pp. 3919–
3923.

[27] C.-H. H. Yang, Y. Gu, Y.-C. Liu, S. Ghosh, I. Bulyko, and A. Stolcke,
“Generative speech recognition error correction with large language
models and task-activating prompting,” in Proc. IEEE ASRU, Taipei,
Dec. 2023, pp. 1–8.

[28] R. Ma, M. J. Gales, K. M. Knill, and M. Qian, “N-best T5: Robust
asr error correction using multiple input hypotheses and constrained
decoding space,” in Proc. Interspeech, Aug. 2023.

[29] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with re-
current neural networks,” in Proc. ICML, Pittsburgh, PA, Jun. 2006, pp.
369–376.

[30] T. Kudo and J. Richardson, “Sentencepiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text processing,”
Proc. EMNLP, p. 66, 2018.

[31] W. Kang, X. Yang, Z. Yao, F. Kuang, Y. Yang, L. Guo, L. Lin, and
D. Povey, “Libriheavy: a 50,000 hours asr corpus with punctuation
casing and context,” in Proc. IEEE ICASSP, 2024, pp. 10 991–10 995.

[32] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, “Hybrid
CTC/attention architecture for end-to-end speech recognition,” IEEE
Journal of Selected Topics in Signal Processing, vol. 11, no. 8, pp. 1240–
1253, 2017.

[33] Z. Yao, D. Wu, X. Wang, B. Zhang, F. Yu, C. Yang, Z. Peng, X. Chen,
L. Xie, and X. Lei, “WeNet: Production oriented streaming and non-
streaming end-to-end speech recognition toolkit,” in Proc. Interspeech,
Brno, Czechia, Sep. 2021, pp. 4054–4058.

[34] T. Hori, S. Watanabe, and J. Hershey, “Joint CTC/attention decoding for
end-to-end speech recognition,” in Proc. ACL, Vancouver, BC, Canada,
Jul. 2017, pp. 518–529.

[35] A. Graves, “Sequence transduction with recurrent neural networks,” in
Proc. ICML, Edinburgh, Scotland, Jun. 2012.

Authorized licensed use limited to: Brno University of Technology. Downloaded on June 04,2025 at 14:38:56 UTC from IEEE Xplore. Restrictions apply.

