
Vol.:(0123456789)

The Journal of Supercomputing (2025) 81:810
https://doi.org/10.1007/s11227-025-07337-0

Improved verification limit for the convergence
of the Collatz conjecture

David Barina1

Accepted: 21 April 2025
© The Author(s) 2025

Abstract
This article presents our project, which aims to verify the Collatz conjecture com-
putationally. As a main point of the article, we introduce a new result that pushes
the limit for which the conjecture is verified up to 271 . We present our baseline algo-
rithm and then several sub-algorithms that enhance acceleration. The total accelera-
tion from the first algorithm we used on the CPU to our best algorithm on the GPU
is 1 335× . We further distribute individual tasks to thousands of parallel workers
running on several European supercomputers. Besides the convergence verification,
our program also checks for path records during the convergence test. We found four
new path records.

Keywords Collatz conjecture · Software optimization · Parallel computing · Number
theory

1 Introduction

Collatz conjecture is one of the simplest unsolved problems in mathematics. It deals
with iterations of the number theoretic function, which takes an odd integer n to
3n + 1 and an even n to n/2. The conjecture asserts that iterations of this function
starting at arbitrary positive number n always lead to the number 1. Jeffrey Lagarias,
the famous mathematician, stated that the Collatz conjecture "is an extraordinarily
difficult problem, completely out of reach of present-day mathematics" [1]. There is
an extensive literature on this conjecture. Preprints [2] and [3] provide an overview
of such papers.

 * David Barina
 ibarina@fit.vutbr.cz

1 Faculty of Information Technology, Brno University of Technology, Bozetechova 1/2, Brno,
Czech Republic

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-025-07337-0&domain=pdf

 D. Barina 810 Page 2 of 14

Because the output of 3n + 1 branch is even for odd n and therefore n/2 step must
follow, we can replace this branch by (3n + 1)∕2 . The Collatz conjecture now asserts
that a sequence defined by repeatedly applying the function

always converges to the cycle passing through the number 1 for arbitrary positive
integer n. The conjecture has never been proven. There is, however, experimental
evidence and heuristic arguments that support it. At the time of writing this article,
all starting values up to 268 were computer-checked [4]. This paper presents a result
that pushes this limit to 271.

We have created a distributed heterogeneous computing system that sequentially
tests all integers and thus pushes the boundary beyond which the Collatz conjecture
is explored. The system runs on supercomputers in Europe and consists of thousands
of parallel workers to which work is centrally assigned. Workers compute their
tasks either on the CPU or on the GPU. This paper describes the architecture and
development of this system.

The rest of the paper is organized as follows. Section 2 reviews related work,
especially competitive projects and the results achieved so far. Section 3 explains
all the algorithms we used in the convergence verification. Section 4 deals with the
distribution of individual tasks to thousands of parallel workers. Section 5 provides
a performance evaluation of the algorithms from Sect. 3. Section 6 presents the
achieved results. Finally, Sect. 7 concludes the paper.

2 Related work

Several current or past projects seek to disprove or verify the Collatz conjecture.
Convergence addresses the question of whether all initial numbers tested will
eventually reach the value 1. We focus on the projects that check for the convergence
of the conjecture for all numbers up to some upper bound. The path records are
starting values that set new records for the highest point of trajectory before reaching
1. The programs that check for convergence usually also collect path records.
The question is how far the Collatz conjecture has been computationally verified
and how fast (numbers per second) the methods in such projects are. The measure
numbers per second means the number of initial numbers verified per second, which
does include numbers that are not checked at all.

As the first tracked record, in 1973, Dunn [5] verified the convergence below
approximately 224.78 . In 1992, Leavens and Vermeulen [6] verified the convergence
for all numbers below approximately 245.67.

Before 2012, Eric Roosendaal [7] checked all numbers up to 260 on the CPUs.
Meanwhile, Tomás Oliveira e Silva [8] checked the numbers up to 5 × 260 using a
different software/hardware. Up to that moment, Tomás Oliveira e Silva and Eric
Roosendaal alternated in the lead. According to information published on Oliveira
e Silva’s website, the speed of his program was about 231 numbers per second on

(1)T(n) =

{
(3n + 1)∕2, for odd n,

n∕2, for even n,

Improved verification limit for the convergence of the Collatz… Page 3 of 14 810

computers at that time. Eric Roosendaal estimates the theoretical speed of his
algorithm on GPU as approximately 238.86 numbers per second. However, this is a
projected speed; no such program exists.

In 2017, the yoyo@home project [9] checked for convergence of all numbers
up to 87 × 260 . Their CPU code checked about 235.48 numbers per second and core.
1 000 volunteers participated in the project, and each number was independently
checked twice.

Also, in 2017, Honda et al. [10] claimed they can check 240.25 numbers per
second on the GPU. Their program is, however, only able to verify 64-bit
numbers.

From 2019 to 2021, our project [4] verified the convergence of all
numbers below 268 . We used CPUs as well as GPUs along with the power of
supercomputers. Our CPU implementation achieved a speedup to 231.97 numbers/
second, whereas the speed on GPUs reached the limit of 237.68 numbers/second.
Both implementations can check 128-bit numbers. This article is a continuation
of our previous work.

Unlike [4], the implementation of sieves in this paper is much more sophisticated
(and thus faster). Unlike [4], we compared many sieve sizes and different settings,
and the results are given in Sect. 5. The contributions of this paper include (a)
introduction of 3k sieves and optimized code for the sieve of the size of 32 (Sect. 3.2),
(b) extending the algorithm to a distributed environment (Sect. 4), (c) comparison of
different algorithms under different settings (Sect. 5), (d) publishing the result where
the project verified all numbers below 271 (Sect. 6). My motivation was to push the
limit to which the Collatz conjecture is verified, and possibly find a counterexample.

3 Algorithms

This section will explain all the algorithms we used in the convergence testing.
Primarily, the same algorithms are used on both CPU and GPU. Another issue is
distributing convergence testing across multiple computers, which we will cover
in the next section.

3.1 Baseline testing

The baseline testing is an algorithm by which the iterations of the Collatz
function are calculated. The first thing that comes to mind is to use Eq. (1)
directly. Indeed, we can formulate a naive convergence verification algorithm, as
listed in Algorithm 1. The ⟨n⟩2 is the result of n modulo 2 operator. The algorithm
tests the numbers in ascending order. This way, we can stop testing when n drops
below the initial value n0 (since all numbers below were already tested). In more
detail, the algorithm tests a single number and thus has to be repeated on each
number independently, from the smallest to the largest one.

 D. Barina 810 Page 4 of 14

Algorithm 1 Naive algorithm

In [4], we tracked T(n)-trajectory on n + 1 rather than directly on n. The trick
is that when the function calculating T(n) iterates, we switch between n and n + 1
to always use only multiplication with no additive operation. For example, the
trajectory on n of 12 is (6, 3, 5, 8, 4, 2, 1), whereas on n + 1 , the same trajectory
is (7, 4, 6, 9, 5, 3, 2). We use the ctz operation, which counts the number of
trailing zero bits following the least significant nonzero bit, and then perform
multiple divisions by two and multiple multiplications by three at once (for
details see [4]). Thus, we merge several even as well as odd steps into single
ones. Moreover, the powers of three can be precomputed in a small look-up table,
and these multiplications can be performed using a single multiplication. In other
words, combining a number of k consecutive even steps leads to a2k ⟶ a , and
combining a number of k consecutive odd steps leads to a2k − 1 ⟶ a3k − 1 .
Thus, if the binary representation of a number ends in k zeros, we have the
first case, and if it ends in k ones, the second one. The procedure is listed in
Algorithm 2. One can verify that for odd n, the average number of iterates
computed in a single step for Algorithm 2 is 4.

For those for which it is not obvious that a number with k trailing zeros in
its binary representation will result in k consecutive odd steps, we offer another
perspective on the matter. Rather than defining the T(n) as in (1), and tracking
the trajectory directly on n, we can track the same trajectory on n + 1 with the
auxiliary function

Thus, the multiplying by 3 just moved to the even branch. The trick is that when
calculating the function iterates, our algorithm switches between n and n + 1 in such
a way that we always use only the even branch of either T or T1 . Therefore, the above
functions can be expressed as

and

(2)T1(n) =

{
(n + 1)∕2 if n ≡ 1 (mod 2),

3n∕2 if n ≡ 0 (mod 2).

(3)T(n) =

{
T1(n + 1) − 1 if n ≡ 1 (mod 2),

n∕2 if n ≡ 0 (mod 2),

Improved verification limit for the convergence of the Collatz… Page 5 of 14 810

So, by suitably switching these two equations, we can always use the ctz operation
and perform several steps at once. Therefore, we can perform several (3n + 1) steps
at once.
Algorithm 2 New algorithm used in [4]

Comparison with the baseline testing algorithm, where the time is given per a
work unit of the size of 230 , gives us 8.8976 s for Algorithm 1 and 5.7024 s for
Algorithm 2. This quick comparison reveals that Algorithm 2 is about 36 % faster.
The results were obtained on a 3.0 GHz CPU (AMD Ryzen Threadripper 2990WX).
For this reason, we decided to optimize further only Algorithm 2.

3.2 Sieve 3k

Imagine the following step on numbers of the form 2n + 1 (odd numbers).

Notice that 3n + 2 > 2n + 1 , and the algorithm tests the numbers in ascending order.
This step tells us that there is no need to test numbers of the form 3n + 2 because
it was already tested in the 2n + 1 test. This will allow us to reduce the number of
tested values by 33.33 %. We call this optimization modulo 3 sieving. The same
procedure can be used for the initial numbers of the general form 3kn + m . For
example, using 32 sieve, the percentage of eliminated initial numbers is 44.44 %.
However, higher 3k sieves bring almost no acceleration (for 36 = 729 the percentage
is only 45.95 %). Table 1 summarizes the percentage of sieves up to 36 . Note that
there is no improvement between 32 and 33 sieves.

Using a 3k sieve is a time-critical operation. Therefore, much optimization was
devoted to it. For example, the following piece of code tests whether an initial
number passes the 32 sieving. It is based on the identity 260 ≡ 1 (mod 9) . The
problem is how to calculate modulo 9 from the 128-bit data type using only the
64-bit type. Since we know that 260 ≡ 1 (mod 9) , we can shift the number 60 bits to

(4)T1(n) =

{
T(n − 1) + 1 if n ≡ 1 (mod 2),

3n∕2 if n ≡ 0 (mod 2).

(5)2n + 1 →

3(2n + 1) + 1

2
= 3n + 2

 D. Barina 810 Page 6 of 14

the right (from position 260 to position 1). This is how we break a 128-bit data type
into several 64-bit ones. We then simply call the modulo operation on a 64-bit data
type.

3.3 Sieve 2k

Let Tk denote the kth iteration of the function T. The general form [11] of Tk(n) is

where odd(n
L
) is the number of odd steps of T(n) that were taken in the computation

of Tk(n
L
) . We basically split n as n = 2kn

H
+ n

L
 , i.e., k lowest significant bits

(least significant bits) along with the rest of the high significant bits. Competitive
programs use this equation to perform k steps at once (two tables have the size of 2k
entries, and indices correspond to n

L
). However, we used this acceleration technique

to build a large sieve (the size of the sieve is 2k bits). Using the sieve, we test only
those numbers that (a) do not converge or (b) join the path of a lower number in k
steps. This is the reason why the entry of such a sieve is just one bit (2k bits in total).
As might be expected, the acceleration obtained from this method is significant.

For those who find the above explanation unclear, we offer a slightly simpler view
of the matter. Look at Equation (6). It gives you a way to calculate k iterations of a
T(n) function at once. On the left side, you see Tk(2kn

H
+ n

L
) , which means that to

(6)T
k(2kn

H
+ n

L
) = 3odd(nL)n

H
+ T

k(n
L
),

Table 1 Residues modulo 3k
and percentage of initial values
eliminated by this sieve

Sieve size Residues Eliminated (%)

31 {2} (mod 3) 33.3333

32 {2, 4, 5, 8} (mod 9) 44.4444

33 {2, 4, 5, 8, 11, 13, 14, 17, 20, 22, 23, 26} (mod 27) 44.4444

34 – 45.6790

35 – 45.6790

36 – 45.9533

Improved verification limit for the convergence of the Collatz… Page 7 of 14 810

calculate k iterations, we have to split the number into two parts n = 2kn
H
+ n

L
 . For

all n
L
 we precalculate (a) odd(n

L
) and (b) Tk(n

L
) . Now we can jump k steps forward

just using two pre-calculated tables. It holds that 0 ≤ n
L
< 2k . Now the question is

whether the initial value is greater than the value on the right side of (6), formally
n
H
3odd(nL) + T

k(n
L
) < 2kn

H
+ n

L
 for all n

H
> 0 . If the answer is yes, the ending

number drops below the starting number, and we can end the verification. This is the
principle of the 2k sieve.

3.4 Solving congruence classes concurrently

Our CPU and GPU programs can concurrently verify 2k (k matches the sieve size)
numbers of the same congruence class. This mainly means that the program verifies
the work units having the size of 2task size numbers and solves the lowest k bits at
once, where k < task size . After k least significant bits, the code paths diverge. This
results in a verification of individual numbers up to 2task size.

For example, consider Algorithm 2. The concurrent algorithm solves a class of
2k numbers having k least significant bit in common. The 2k sieve is applied before
the concurrent algorithm starts (note that the lowest k bits are the index into the 2k
sieve). In contrast, the 3k sieve is applied when solving bits greater than k.

4 Distributed computing

This section deals with distributing individual tasks to thousands of concurrent
workers. All the algorithms described in the previous section are implemented
for the CPU and GPU and referred to as the worker. The GPU code is written in
OpenCL (both NVIDIA and AMD are supported), whereas the CPU code is written
in C. The code uses 128-bit integer compiler extensions. The CPU worker uses
the GMP library to resolve computation above 128 bits (for arbitrary precision
arithmetic).

All � s (see Algorithm 2) that occurred during the convergence test of the range
are summed together to raise the checksum (proof of work). These checksums
are recorded on the server. The maximum value of nmax that occurred during the
convergence test for a given interval is also detected and recorded on the server.
Our implementation can verify work units of 2task size = 240 128-bit numbers. We
experimented with several values for task size. The selected value turned out to be
small enough to be processed in a maximum of a few hours on conventional CPUs
and large enough to allow such units to be managed by a regular server. The server
manages 232 work units, which allows up to 272 numbers to be explored. A record
of each work unit occupies 322 bits on the server (161 gigabytes for the whole 232
space). The data is stored in these 322 bits comprising a calculation time, number
of 128-bit overflows, offset of maximum value encountered in the calculation,
checksum, client ID, and some bit flags.

Table 2 provides examples of ranges that are calculated by every worker from
task id.

 D. Barina 810 Page 8 of 14

The architecture of our project is shown in Fig. 1. It consists of three components—
the server, clients, and workers. The server runs in a single instance in our university’s
infrastructure. Clients are run by job scheduling systems (PBS, TORQUE, SGE,
Slurm) in the infrastructure of various supercomputers in Europe. A single computing
node can host a single client or several clients. Clients are multi-threaded and can serve
several CPU or GPU workers. Clients spawn workers and correspond to individual
CPU cores or GPUs.

The server and clients run on different computers. They communicate with each
other using the TCP/IP protocol. The communication protocol has been specially
designed to have low latency (all client-to-server requests precede server-to-client
responses). Individual requests that the server can serve include Request Assignment,
Request Lowest Incomplete Assignment, Return Assignment, Interrupt Assignment,
Request Multiple Assignments, and others.

Conversely, the client and workers run on the same computer. They communicate
with each other via the worker’s standard output (stdout). For these purposes, we have
developed an extensive text protocol. Messages in this log include the time elapsed
while solving the work unit, checksum, the initial value for the maximum value reached
during the solution of the work unit, the sequence number of the work unit (task id),
and others.

This whole system can serve thousands of workers working simultaneously. It
uses various supercomputers for this. MetaCentrum operates and manages distributed
computing infrastructure consisting of computing resources owned by CESNET
(an association of universities of the Czech Republic and the Czech Academy of
Sciences) in the Czech Republic. IT4Innovations National Supercomputing Center
operates the most powerful supercomputing systems in the Czech Republic. At
present, IT4Innovations runs three supercomputers, including the Czech most
powerful supercomputer, Karolina. The LUMI supercomputer is the most powerful
supercomputing system in Europe (and, at the time we were solving our project, third
most powerful in the world). A few examples of how powerful the system can be are
shown in Table 3. MetaCentrum supercomputer provides up to 2 000 CPUs cores,

Table 2 Ranges of numbers
for workers depending on task
id. Ranges are expressed using
hexadecimal numbers

Task id Range of numbers

0 0x0 – 0x10000000000
1 0x10000000000 – 0x20000000000
1000000000 0x3b9aca000000000000 – 0x3b9aca010000000000
2175961363 0x81b289130000000000 – 0x81b289140000000000

Fig. 1 An architecture of the distributed computing project. The numbers indicate the multiplicity of
individual boxes. The server always runs in a single instance

Improved verification limit for the convergence of the Collatz… Page 9 of 14 810

whereas Karolina provides 128 cores per node (AMD Zen 2 EPYC 7H12), and finally
LUMI supercomputer provides eight AMD MI250X GPUs per node.

Notice in Table 3 that the resulting performance is massively higher when GPUs
are included compared to the CPU-only situation. During our verification, we
consumed 12 395 CPU-years (average time per solving a single work unit is 6 min
and 25 s) and 159 GPU-years (average time is 7 s). This includes even very slow
machines. The typical average duration at the time of writing is much lower.

Someone might be interested in how individual assignments are distributed
to workers. Each client asks the server to allocate a range to search. The server
allocates the smallest unassigned range and sends it to the client. The client then
passes the range to the worker (workers can occupy one CPU core or one GPU).
Since multiple workers can run in parallel (multiple threads, or multiple GPUs) on
a single computing node, each client actually requests several ranges and distributes
them to multiple workers.

5 Evaluation

This section provides a performance evaluation of the algorithms from Sect. 3. The
comparison is performed on AMD Ryzen Threadripper 2990WX and NVIDIA
GeForce RTX 2080 Ti. The evaluation starts with comparing 2k sieve sizes and 2k
sieve compression. Then, we evaluate the benefit of 3k sieves. Finally, we deal with
processing congruence classes concurrently. In all cases, we use a work unit of the
size of 240 (the time is given per 240 numbers). The only evaluation metric is time
given in seconds. At the end of the section, we also mention the speed-up factor.
The paper evaluates these techniques: using a 2k sieve, solving congruence classes
concurrently, and using a 3k sieve.

We experimented with many sieve sizes and concluded that the sieve size 234
is optimal for the CPU implementation, while the size 224 is optimal for GPUs.
See Table 4a and b. Note that 234 bits equals 2 gigabytes. So, the consequence is a
huge memory footprint. However, we have found that these sieves are formed by
several constantly repeated bit patterns. More precisely, such sieves are formed
by only fifty constantly repeated 64-bit patterns (which can be stored using

Table 3 Supercomputers used in the computational verification of the Collatz conjecture. WU/sec stands
for work units per second. Measured at the end of May 2023

Computing resources involved CPU workers GPU workers WU/sec

MetaCentrum 1 949 0 7.7097
MetaCentrum, IT4I (16 nodes) 3 989 0 11.6041
MetaCentrum, IT4I (32 nodes) 6 043 0 15.8773
MetaCentrum, IT4I (32 nodes), LUMI (16

nodes)
6 048 128 39.6292

MetaCentrum, LUMI (24 nodes) 1 944 192 43.4859
MetaCentrum, LUMI (52 nodes) 1 445 416 66.0541

 D. Barina 810 Page 10 of 14

indices in a small look-up table). In our project, we use 8-bit indices. However,
the compression ratio can reach the value of around 1:10 if 64-bit patterns are
represented by a 6-bit index.

Now, we compare the benefits of the 2k sieve compression using a look-up
table. The comparison is shown in Table 5a and b. On the CPU, we can see that
as the sieve size increases, the compression becomes less and less effective. In
the case of 224 sieve, the speedup is about 3 %, whereas in the case of 234 sieve
the speedup is zero. However, we must realize that compression also saves disk
space (1:8 ratio) and allows files to be copied to computing nodes faster. Without
compression, large sieves could not be distributed to computing nodes. On the
GPU, the compression provides speedup using 232 sieve. However, 224 sieve is
faster; compression does not help here.

Table 4 Comparison of sieve sizes. The best result is in bold

Sieve size [bits] Time [secs]

(a) Several promising sieve sizes used on the CPU. Sieve 32 was used.
230 264.4728

232 231.8417

234 223.2903
236 243.2161

 Sieve size [bits] Time [secs]

(b) Several promising sieve sizes used on the GPU. No 3k sieve was used.
216 6.0532

224 5.0139
232 5.2693

Table 5 Speed comparison of an enabled/disabled sieve compression. The best result is in bold

Sieve Compression
disabled [secs]

Compression
enabled [secs]

(a) Compression on the CPU. All experiments are made with a 32 sieve and concurrently solve 2k
congruence classes.

224 385.8868 375.5922

232 237.6361 231.3289

234 219.9232 220.7683

 Sieve Compression
disabled [secs]

Compression
enabled [secs]

(b) Compression on the GPU. All experiments are made with a 32 sieve.
216 6.2159 6.6444

224 4.4690 4.7300

232 5.6153 5.2906

Improved verification limit for the convergence of the Collatz… Page 11 of 14 810

Without compression, it is possible to distribute the 232 sieve to the CPU clients.
The compression enables the distribution of the 234 sieve. From Table 4a, the
speedup is about 4 %.

We also compare the efficiency of 3k sieves. See Table 6. 234 sieve is used on the
CPU, while 224 sieve is used on the GPU. The CPU computes the same congruence
classes concurrently. We can see that 3k sieves bring some acceleration. On the CPU,
it is purely about the number of reduced initial numbers. On the GPU, a 32 sieve
seems to be breaking thread convergence; 31 is slightly faster.

As another evaluation point, we compare the efficiency of computing the same
congruence classes concurrently. The comparison is given in Table 7a and b. The
time is given per a work unit of the size of 240 , and sieve 32 is used. Overflow means
the ulong data type (OpenCL) is insufficient for intermediate calculations. It can
be seen that, on the CPU, this algorithm brings a massive speedup (e.g., 3.27× for
sieve 234). The situation on GPUs is the opposite; the algorithm does not bring any
acceleration.

We now look at how much cumulative speedup each algorithm brings. See
corresponding Tables 8 and 9. The baseline algorithm also computes the checksum
and maximum value reached during the computation. The baseline algorithm is

Table 6 Efficiency comparison
of 3k sieves. 2k sieve
compression was disabled in all
cases. The best result is in bold

Sieve 3k Time on CPU [secs] Time
on GPU
[secs]

not used 317.5541 5.1053
31 245.0160 4.0477
32 214.8214 4.2992

Table 7 Speed comparison of an enabled/disabled concurrently solving congruence classes. The best
result is in bold

Modulo Algorithm disabled [secs] Algorithm
enabled
[secs]

(a) Speed comparison on the CPU.
224 1 008.7780 387.0207

232 757.4297 233.4601

234 711.5311 217.5859
236 686.7216 234.2653

 Modulo Algorithm disabled [secs] Algorithm
enabled
[secs]

(b) Speed comparison on the GPU.
224 4.4866 overflow

232 5.7281 9.2971

 D. Barina 810 Page 12 of 14

Algorithm 2. Showing the speedup over Algorithm 1 would not be fair because it
is not implemented in an optimized form. The tables mentioned above show that
the best GPU implementation is 52.1× faster than the best CPU implementation.
The total speedup from the first algorithm we started with on the CPU to our best
algorithm on the GPU is 1 335.9×.

6 Results

At the time of writing this article, we have managed to verify the convergence
of the Collatz conjecture for all numbers up to the limit of 271 (which is equal to
2 048 × 260). This is the moment when the length of a non-trivial cycle rises to
355 504 839 929 [12]. See Table 10 for a timeline from the start of our project.

The n is called the path record if, for all m < n , the inequality t(m) < t(n) holds,
where t(n) is the highest number occurring in the sequence starting at n. During the
verification, we found five new path records (sequence A006884 in The On-Line
Encyclopedia of Integer Sequences). The initial values for path records are

Table 8 Overall comparison on
the CPU

Algorithm Time [secs] Cumm. speedup

baseline algorithm 5 643.9640 1.00×

using 234 sieve 949.9505 5.94×

solving congruence classes
concurrently

320.4502 17.61×

using 32 sieve 220.0285 25.65×

Table 9 Overall comparison on
the GPU

Algorithm Time [secs] Cumm. speedup

baseline algorithm 12.8870 1.00×

using 224 sieve 5.0535 2.55×

using 31 sieve 4.2248 3.05×

Table 10 Timeline of our project verifying the convergence of the Collatz conjecture

Date Status

2019-09-04 Started the project
2020-05-07 The convergence of all numbers below 268 is verified
2021-12-10 The convergence of all numbers below 269 is verified
2023-07-09 The convergence of all numbers below 270 is verified
2023-11-03 The convergence of all numbers below 1.5 × 270 is verified
2025-01-15 The convergence of all numbers below 271 is verified

Improved verification limit for the convergence of the Collatz… Page 13 of 14 810

– 274 133 054 632 352 106 267,
– 1 378 299 700 343 633 691 495,
– 1 735 519 168 865 914 451 271,
– 1 765 856 170 146 672 440 559, and
– 2 358 909 599 867 980 429 759.

Lagarias and Weiss [13] predicted using the large deviation theory for random walks
that the highest number occurring in the sequence for a path record n grows like n2 .
The results recorded up to 271 agree with this prediction.

To allow other developers and scientists to benefit from this work and build on it,
the programs used in this article have been released as open-source software.1

7 Conclusion

This article presents our project aiming to computationally verify the convergence of
the Collatz conjecture. In our previous article, in 2020, we verified the convergence
up to the limit 268 . This paper presents a result that further pushes this limit to 271.

We presented several sub-algorithms that bring some acceleration to our
baseline algorithm. The paper further dealt with the distribution of individual
tasks to thousands of parallel workers. While doing so, our system runs on several
supercomputers in Europe. The workers compute their tasks either on the CPU or
on the GPU. On GPU, the code is written in OpenCL, and both NVIDIA and AMD
cards are supported.

We further evaluated our algorithms and found that our best GPU implementation
is 52× faster than our best CPU implementation. The total speedup from the first
algorithm we used several years ago on the CPU to our best algorithm today on the
GPU is 1 335×.

Acknowledgements Computational resources were provided by the e-INFRA CZ project (ID:90254),
supported by the Ministry of Education, Youth and Sports of the Czech Republic.

Funding Open access publishing supported by the institutions participating in the CzechELib
Transformative Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

1 https:// github. com/ xbari n02/ colla tz, commit 53c2a06.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/xbarin02/collatz

 D. Barina 810 Page 14 of 14

References

 1. Lagarias JC (ed) (2010) The Ultimate Challenge: The 3x + 1 Problem. American Mathematical
Society

 2. Lagarias JC (2003) The 3x + 1 problem: An annotated bibliography (1963–1999) (sorted by author).
arXiv: math/ 03092 24

 3. Lagarias JC (2006) The 3x + 1 problem: An annotated bibliography, II (2000-2009). arXiv: math/
06082 08

 4. Barina D (2021) Convergence verification of the Collatz problem. J Super Comput 77(3):2681–
2688. https:// doi. org/ 10. 1007/ s11227- 020- 03368-x

 5. Dunn R (1973) On Ulam’s Problem. University of Colorado at Boulder, Tech. rep
 6. Leavens GT, Vermeulen M (1992) 3x+1 Search programs. Comput Math Appl 24(11):79–99.

https:// doi. org/ 10. 1016/ 0898- 1221(92) 90034-F
 7. Roosendaal E (2019) personal communication
 8. Oliveira e Silva T (2010) Empirical verification of the 3x+1 and related conjectures. In: Lagarias JC

(ed) The Ultimate Challenge: The 3x+1 Problem. American Mathematical Society, pp 189–207
 9. Hercher C (2018) Über die Länge nicht-trivialer Collatz-Zyklen. Die Wurzel 6 and 7
 10. Honda T, Ito Y, Nakano K (2017) GPU-accelerated exhaustive verification of the Collatz conjecture.

Int J Netw Comput 7(1):69–85
 11. Silva TOE (1999) Maximum excursion and stopping time record-holders for the 3x + 1

problem: computational results. Math Comput 68(225):371–384. https:// doi. org/ 10. 1090/
S0025- 5718- 99- 01031-5

 12. Hercher C (2023) There are no Collatz m-cycles with m ≤ 91 . J Integer Seq 26(3):1–22
 13. Lagarias JC, Weiss A (1992) The 3x + 1 problem: two stochastic models. Annals Appl Probab

2(1):229–261. https:// doi. org/ 10. 1214/ aoap/ 11770 05779

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/math/0309224
http://arxiv.org/abs/math/0608208
http://arxiv.org/abs/math/0608208
https://doi.org/10.1007/s11227-020-03368-x
https://doi.org/10.1016/0898-1221(92)90034-F
https://doi.org/10.1090/S0025-5718-99-01031-5
https://doi.org/10.1090/S0025-5718-99-01031-5
https://doi.org/10.1214/aoap/1177005779

	Improved verification limit for the convergence of the Collatz conjecture
	Abstract
	1 Introduction
	2 Related work
	3 Algorithms
	3.1 Baseline testing
	3.2 Sieve
	3.3 Sieve
	3.4 Solving congruence classes concurrently

	4 Distributed computing
	5 Evaluation
	6 Results
	7 Conclusion
	Acknowledgements
	References

