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Abstract—Transcranial sonography of the substantia nigra
(TCS-SN) may serve as a suitable test for screening groups at
a high risk of developing Lewy body diseases (LBDs) such as
Parkinson’s disease or dementia with Lewy bodies. Although one
of the most prominent early markers of these neurodegenerative
disorders is the idiopathic rapid eye movement (REM) sleep
behavior disorder, the relationship between TCS-SN and sleep
alterations has not been fully explored. The aim of this study
is to investigate whether sleep-based biomarkers could be used
to stratify subjects into three groups with different echogenic
areas of the substantia nigra. To achieve this goal, we enrolled
93 participants who underwent TCS-SN and 7-night actigraphy.
Additionally, participants completed a sleep diary and the REM
sleep behavior disorder screening questionnaire. To assess the
severity of pathological echogenicity, we employed a machine
learning approach utilizing the XGBoost algorithm. The results
show that a multimodal assessment of sleep was able to predict
the outcomes of TCS-SN with a balanced accuracy of 96 %. Over-
all, these findings underscore the potential of a comprehensive
approach to model the results of TCS-SN and its implications
for the prodromal diagnosis of LBDs.

Index Terms—actigraphy, Lewy body diseases, REM sleep be-
havior disorder screening questionnaires, sleep diary, substantia
nigra, transcranial sonography

I. INTRODUCTION

Lewy body diseases (LBDs) represent a group of neu-
rodegenerative disorders characterized by the accumulation of
Lewy bodies within neurons, notably in the cerebral cortex
and basal ganglia, including the substantia nigra. These accu-
mulations contribute to the degeneration and eventual death of
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dopaminergic cells [1]–[3]. LBDs encompass Parkinson’s dis-
ease (PD), Parkinson’s disease dementia (PDD), and dementia
with Lewy bodies (DLB) [3]. Unfortunately, as of now, there
is no cure for LBDs. However, early diagnosis and tailored
treatment can help mitigate disease progression and enhance
the patients quality of life [1], [3], [4].

Idiopathic rapid eye movement (REM) sleep behavioral
disorder (iRBD) emerges as an early indicator of LBDs. iRBD
is characterized by sudden, often vigorous, movements during
REM sleep, driven by the content of vivid dreams [5]. This
disorder is prevalent in over 80 % of patients with LBDs,
with a lower likelihood in PD [2]. E.g., the diagnosis of DLB
based on iRBD can achieve a sensitivity of up to 90 % and
specificity of 73 % [6]. Notably, in the early prodromal phase
of DLB, iRBD manifests in 50 % of cases (evaluated according
to NACC-USD version 3) [7], [8]. The mean interval between
iRBD onset and conversion to a symptomatic neurodegener-
ative disorder has been estimated at 14±6 years [9], [10].
This interval offers a window for potential neuroprotective
treatments aimed at slowing or halting progressive neuronal
loss [9]–[11].

Transcranial sonography (TCS) is a non-invasive medical
imaging technique used as an alternative diagnostic method
to confirm clinical diagnoses [15]. TCS provides ultrasound
images of brain tissues, including the substantia nigra (SN),
a region crucial for movement and dopamine production,
which may exhibit changes in neurodegenerative diseases
in the prodromal stage [15], [16]. For example, increased
echogenicity of the substantia nigra is frequently observed in
TCS scans of PD patients [15], [17]. TCS of SN (TCS-SN)
could potentially be used even in the prodromal state of LBDs.
For instance, TCS-SN could predict PD or DLB in iRBD



patients [18]. However, this prodromal screening has only
40 % sensitivity and 61 % specificity (in the case of PD) [19].
Furthermore, the quality of TCS result images is contingent
on the presence of a suitable temporal bone window [17], thus
this screening cannot be performed on all individuals.

Polysomnography (PSG), often referred to as the gold stan-
dard, is the conventional method for iRBD identification [4],
[9]. Nevertheless, its drawback is that it involves specialized
equipment found in professional sleep laboratories [12]. In
contrast, actigraphy relies on a simpler wearable device known
as an actigraph, which records data from a 3-axis accelerom-
eter and can measure temperature, ambient light, and other
signals outside of a clinic [9]. This makes actigraphy a more
cost-effective prescreening tool for iRBD; however, it is not
as accurate as PSG [13]. Another approach of iRBD screening
is based on the REM Sleep Behavior Disorder Screening
Questionnaire (RBD-SQ), which is an exploratory subjective
screening tool consisting of ten questions targeting typical
RBD symptomatology [9], [14].

Although some studies have reported a relation be-
tween sleep disorders, specifically iRBD, and pathological
echogenicity of the SN in patients with LBDs, this field is
still relatively young, and some knowledge gaps have not been
bridged yet [18]. The aim of this work is to take a step further
and explore whether sleep-based biomarkers could be used
to stratify subjects into three groups with different echogenic
areas of the SN. Such a technique would enable neuroscientists
to estimate the results of TCS-SN even in subjects with an
inappropriate temporal bone window.

II. MATERIALS AND METHODS

A. Participants and TCS-SN

For the purpose of this study, we enrolled 93 participants
who met the criteria for the temporal bone window. These
subjects were stratified into three groups based on the results
of TCS-SN:

1) SN+ group (N = 25): Subjects with pathological
echogenicity, i.e., with an echogenic area (EA) ≥
0.2 cm2; this cut-off value, established in previous stud-
ies [20], [21], provides 95 % sensitivity for diagnosing
PD.

2) nonHC group (N = 21): This group included subjects
with EA between 0.16 and 0.19 cm2; these subjects fell
into a gray zone, making the diagnosis uncertain.

3) HC group (N = 47): Comprising subjects with an EA
≤ 0.15 cm2; this group is considered healthy based on
the literature [15].

Demographic characteristics of this dataset can be found in
Table I. All participants signed an informed consent form that
was approved by the local ethics committee.

B. Assessment of Sleep

All participants underwent 7-day actigraphy. Subsequently,
the actigraphy data were pre-processed in terms of sleep/wake
window identification using an algorithm proposed in [22].
This method builds upon the heuristic technique by van

TABLE I
DEMOGRAPHIC CHARACTERISTICS OF THE PARTICIPANTS

Total Men Women Age (mean±std) [yrs.]
SN+ 25 15 10 70± 13

nonHC 21 10 11 65± 18

HC 47 14 33 64± 16

Hees et al. [23], which is commonly employed in mod-
ern actigraphy tools like scikit-digital-health from
Pfizer R&D [24]. Enhancements include generating 135 fea-
tures for each 30-second time window, with one-third being
temperature-based. These features serve as input for an XG-
Boost classifier, producing binary sleep/wake predictions for
each 30-second interval [22].

Next, we extracted nine features from the pre-processed
data, as listed in Table II, with four features conforming to
the National Sleep Foundation Standards [25]. Similar features
were derived from a sleep diary, which was subjectively filled
out by the participants. A total of 26 features were available
for each night, with 611 successfully recorded nights resulting
in a set of 14 053 records.

Finally, the participants completed the REM sleep behav-
ior disorder screening questionnaire (RBD-SQ) [14]. In the
subsequent modeling, we utilized its total score.

TABLE II
SLEEP FEATURES AND THEIR ABBREVIATIONS

Sleep feature Abbrevation
Time in bed TIB

Sleep onset latency (norm) SOL, SOL-N

Wake after sleep onset (norm) WASO, WASO-N

Wake after sleep offset WASF

Total sleep time TST

Wake bouts WB

Awakening >5 minutes (norm) WB>5, WB>5-N

Sleep efficiency (norm) SE, SE-N

Sleep fragmentation SF

C. Experiments and Machine Learning

Sleep features and RBD-SQ results were used to predict the
outcomes of TCS-SN. The dataset was initially divided into
80 % training and 20 % testing data. Various scenarios were
considered:

• Stratification of participants:
– SN+ vs. HC: Exclusively considered subjects with

SN+ (EA ≥ 0.2 cm2) and healthy controls (EA ≤
0.15 cm2), disregarding subjects in the gray nonHC
zone.

– SN+ vs. NonHC + HC: Categorized subjects based
on EA ≥ 0.2 cm2 as the positive class and the rest
as healthy.

– SN+ vs. NonHC: Excluded subjects with EA ≤
0.15 cm2, treating the NonHC group as the zero



class, focusing on distinguishing subjects with un-
certain TCS-SN diagnosis.

– NonHC vs. HC: Ignored SN+ subjects (EA ≥
0.2 cm2), aiming to ascertain the distinguishability
of HC and NonHC groups based on other features.

• Use of actigraphy, sleep diary, and RBD-SQ features:
– ACG: Utilized actigraphy features, including those

from Table II, along with features normalized based
on [25].

– ACG-N: Subset of ACG, focusing solely on the
normalized actigraphy features from [25]: SOL-N,
WASO-N, WB>5-N, and SE-N, while ignoring other
actigraphy features.

– Diary: Featured the same set of actigraphy-derived
features, but sourced from the sleep diaries of sub-
jects.

– Diary-N: Paralleled ACG-N, with only normalized
features from sleep diaries considered.

– RBD-SQ: Scenarios relied on raw data from the
RBD-SQ, using the final score (0–10) without the
cut-off score of 5.

These scenarios were designed to determine which dataset
is most suitable for predicting TCS-SN results and to evaluate
the potential to differentiate subjects in the gray NonHC zone
or distinguish subjects in the HC and SN+ groups based on
other parameters.

The subsequent analysis was consistent across scenarios,
involving data division into target groups for binary clas-
sification, SMOTE upsampling of the minority class, hy-
perparameter tuning for the XGBoost classifier, and 10-fold
cross-validation [26], [27]. We used the following evaluation
metrics: balanced accuracy (BACC), Matthew’s correlation co-
efficient (MCC), sensitivity (SEN), specificity (SPE), precision
(PRE), and the F1 Score (F1).

Next, the models underwent further analysis using feature
importance and SHAP (SHapley Additive exPlanations) val-
ues. SHAP values are derived from game theory and quantify
the contribution of each feature point to the model’s final out-
put [28]. Moreover, the best models underwent a permutation
test to assess the significance of cross-validated scores through
permutations, yielding p-values. A smaller p-value (p < 0.05)
indicates a stronger dependency between a feature and the
target estimates, while a larger p-value suggests a lack of
real dependency and the model’s inability to provide accurate
predictions [29].

In the final step, the models were tested and evaluated on
the remaining 20 % of the dataset. The testing considered the
connection between nights recorded by subjects, implementing
majority voting for decision-making to maintain the dataset’s
original imbalance, without introducing synthetic data. Various
experiments were conducted, including fine-tuning the thresh-
old for majority voting.

III. RESULTS

The evaluation metrics for all scenarios are presented in
Table III, demonstrating a color-coded scale for enhanced

readability.
Regarding the SN+ vs. HC scenario, a model was able to

discriminate both groups with 96 % sensitivity and specificity
when analyzing all kinds of data, i.e., ACG, diary, and RBD-
SQ.

The SN+ vs. NonHC scenario, utilizing ACG-N + Diary-N
and RBD-SQ features, achieves the highest specificity (97.5 %)
and precision (97.4 %). Incorporating all features increases
sensitivity to 98.7 %, yet at the expense of specificity and
precision.

In the context of the gray zone involving NonHC subjects,
high accuracies (BACC = 96 %) were achieved in the NonHC
vs. HC scenario, suggesting that both groups should be treated
individually; i.e., they cannot be merged and assumed to be
one HC group.

Regarding the feature importances, awakening > 5 minutes
emerged as the most frequent and important feature (14
scenarios). RBD-SQ score dominated in 5 scenarios, while
sleep onset latency and sleep efficiency appeared in 3 and
2 scenarios, respectively. Notably, the difference in feature
importance between the most prominent feature and the others
was generally minimal.

A. SHAP Values

The SHAP values for the SN+ vs. HC scenario (ACG-
N + Diary-N + RBD-SQ) are illustrated in Fig. 1. Notably,
WB > 5, derived from sleep diaries, emerged as the most in-
fluential feature in this scenario. High values indicate subjects
being awake during the night more frequently. According to
SHAP values, this fact is likely significant for individuals with
SN+. Additionally, the plot suggests a connection between
RBD and SN+, as manifested by vivid dreams causing awak-
ening. Intriguingly, the plot shows that high sleep efficiency,
as measured by actigraphy, can associate with SN+ subjects,
contradicting sleep diary results. RBD-SQ as a third feature
aligns with clinical understanding, with low scores indicating
healthy controls who experience fewer sleep-related problems.

B. Permutation Test

In all scenarios, the p-values of the permutation test were
lower than 0.05. This indicates a strong statistical dependency
between features and the model’s output.

C. Test With the Remaining 20 % of the Dataset

Classification results using the remaining 20 % of the dataset
are detailed in Table IV. Various values of the day threshold in
majority voting were tested. The table includes results for the
best setting of this threshold for each scenario. The threshold
values are listed in column N.

IV. DISCUSSION

Our findings demonstrate the feasibility of distinguishing
SN+ individuals from healthy controls with high accuracy
using features such as ACG-N, Diary-N, and RBD-SQ. Impor-
tantly, we showed that the different echogenic areas of the SN
should be divided into three groups, that are distinguishable



TABLE III
CLASSIFICATION RESULTS IN THE CROSS-VALIDATION STEP

Scenario Selected Features BACC MCC SEN SPE PRE F1
SN+ vs. HC ACG 0.839 0.679 0.850 0.829 0.832 0.841

SN+ vs. HC Diary 0.911 0.822 0.931 0.891 0.895 0.912

SN+ vs. HC ACG + RBD-SQ 0.902 0.803 0.898 0.905 0.904 0.901

SN+ vs. HC Diary + RBD-SQ 0.938 0.878 0.975 0.902 0.908 0.940

SN+ vs. HC ACG-N + Diary-N + RBD-SQ 0.960 0.920 0.960 0.960 0.960 0.960

SN+ vs. HC ACG + Diary + RBD-SQ 0.933 0.867 0.964 0.902 0.907 0.935

SN+ vs. NonHC + HC ACG 0.879 0.758 0.879 0.879 0.879 0.879

SN+ vs. NonHC + HC Diary 0.927 0.856 0.960 0.894 0.901 0.929

SN+ vs. NonHC + HC ACG + RBD-SQ 0.917 0.834 0.899 0.935 0.932 0.915

SN+ vs. NonHC + HC Diary + RBD-SQ 0.953 0.907 0.955 0.952 0.952 0.954

SN+ vs. NonHC + HC ACG-N + Diary-N + RBD-SQ 0.957 0.915 0.970 0.945 0.946 0.958

SN+ vs. NonHC + HC ACG + Diary + RBD-SQ 0.956 0.912 0.960 0.952 0.953 0.956

SN+ vs. NonHC ACG 0.854 0.709 0.842 0.867 0.864 0.853

SN+ vs. NonHC Diary 0.940 0.880 0.949 0.930 0.932 0.940

SN+ vs. NonHC ACG + RBD-SQ 0.946 0.893 0.956 0.937 0.938 0.947

SN+ vs. NonHC Diary + RBD-SQ 0.937 0.874 0.949 0.924 0.926 0.938

SN+ vs. NonHC ACG-N + Diary-N + RBD-SQ 0.956 0.912 0.937 0.975 0.974 0.955

SN+ vs. NonHC ACG + Diary + RBD-SQ 0.956 0.913 0.987 0.924 0.929 0.957

NonHC vs. HC ACG 0.885 0.770 0.872 0.898 0.895 0.884

NonHC vs. HC Diary 0.918 0.837 0.949 0.887 0.894 0.920

NonHC vs. HC ACG + RBD-SQ 0.953 0.905 0.945 0.960 0.959 0.952

NonHC vs. HC Diary + RBD-SQ 0.960 0.920 0.978 0.942 0.944 0.961

NonHC vs. HC ACG-N + Diary-N + RBD-SQ 0.945 0.891 0.938 0.953 0.952 0.945

NonHC vs. HC ACG + Diary + RBD-SQ 0.943 0.887 0.938 0.949 0.948 0.943
1 BACC – balanced accuracy, MCC – Matthew’s correlation coefficient, SEN – sensitivity, SPE –
specificity, PRE – precision, F1 – F1 score

Fig. 1. SHAP values of scenario SN+ vs. HC – ACG-N+Diary-N+RBD-SQ

using sleep-based biomarkers. However, a lower ability to
distinguish the NonHC vs. HC group was observed in the
test with remaining 20 % of the dataset, where only 76 %
specificity and 60 % precision were achieved. The results
are consistent with literature [30], where division into three

different groups based on echogenic areas of the SN for iRBD
patients was suggested (HC, iRBD patients and PD patients).

The highest prediction accuracy was achieved when com-
bining all three feature types. This indicates the comple-
mentary nature of actigraphy, sleep diary, and RBD-SQ in



TABLE IV
CLASSIFICATION RESULTS USING THE REMAINING 20 % OF THE DATASET

Scenario Features N BACC MCC SEN SPE PRE F1 TN FP FN TP
SN+ vs. HC ACG 2 0.718 0.375 1.000 0.436 0.323 0.488 34 44 0 21

SN+ vs. HC Diary 4 0.769 0.514 0.667 0.872 0.583 0.622 68 10 7 14

SN+ vs. HC ACG + RBD-SQ 6 0.622 0.286 0.333 0.910 0.500 0.400 71 7 14 7

SN+ vs. HC Diary + RBD-SQ 4 0.769 0.514 0.667 0.872 0.583 0.622 68 10 7 14

SN+ vs. HC ACG-N + Diary-N + RBD-SQ 3 0.679 0.302 0.667 0.692 0.368 0.475 54 24 7 14

SN+ vs. HC ACG + Diary + RBD-SQ 6 0.622 0.286 0.333 0.910 0.500 0.400 71 7 14 7

SN+ vs. NonHC + HC ACG 6 0.667 0.544 0.333 1.000 1.000 0.500 112 0 14 7

SN+ vs. NonHC + HC Diary 4 0.811 0.648 0.667 0.955 0.737 0.700 107 5 7 14

SN+ vs. NonHC + HC ACG + RBD-SQ 6 0.635 0.322 0.333 0.938 0.500 0.400 105 7 14 7

SN+ vs. NonHC + HC Diary + RBD-SQ 6 0.635 0.322 0.333 0.938 0.500 0.400 105 7 14 7

SN+ vs. NonHC + HC ACG-N + Diary-N + RBD-SQ 6 0.667 0.544 0.333 1.000 1.000 0.500 112 0 14 7

SN+ vs. NonHC + HC ACG + Diary + RBD-SQ 6 0.635 0.322 0.333 0.938 0.500 0.400 105 7 14 7

SN+ vs. NonHC ACG 6 0.667 0.486 0.333 1.000 1.000 0.500 34 0 14 7

SN+ vs. NonHC Diary 4 0.745 0.495 0.667 0.824 0.700 0.683 28 6 7 14

SN+ vs. NonHC ACG + RBD-SQ 4 0.564 0.142 0.333 0.794 0.500 0.400 27 7 14 7

SN+ vs. NonHC Diary + RBD-SQ 5 0.730 0.461 0.667 0.794 0.667 0.667 27 7 7 14

SN+ vs. NonHC ACG-N + Diary-N + RBD-SQ 4 0.730 0.461 0.667 0.794 0.667 0.667 27 7 7 14

SN+ vs. NonHC ACG + Diary + RBD-SQ 3 0.627 0.248 0.667 0.588 0.500 0.571 20 14 7 14

NonHC vs. HC ACG 4 0.790 0.540 0.824 0.756 0.596 0.691 59 19 6 28

NonHC vs. HC Diary 5 0.494 -0.011 0.412 0.577 0.298 0.346 45 33 20 14

NonHC vs. HC ACG + RBD-SQ 6 0.410 -0.250 0.000 0.821 0.000 0.000 64 14 34 0

NonHC vs. HC Diary + RBD-SQ 5 0.552 0.101 0.412 0.692 0.368 0.389 54 24 20 14

NonHC vs. HC ACG-N + Diary-N + RBD-SQ 2 0.552 0.101 0.412 0.692 0.368 0.389 54 24 20 14

NonHC vs. HC ACG + Diary + RBD-SQ 6 0.455 -0.170 0.000 0.910 0.000 0.000 71 7 34 0
1 N – a day threshold used in the majority voting, BACC – balanced accuracy, MCC – Matthew’s correlation coefficient, SEN
– sensitivity, SPE – specificity, PRE – precision, F1 – F1 score, TN – true negative, FP – false positive, FN – false negative,
TP – true positive

modelling TCS results. Furthermore, our feature importance
analysis suggests that no single direct biomarker is solely
linked with the increased echogenicity of SN. Instead, a
combination of factors contributes to its diagnosis.

The SHAP values shed light on the importance of specific
features in distinguishing SN+ individuals. For instance, fre-
quent awakenings during the night (WB > 5) were strongly
associated with SN+. Additionally, the connection between
iRBD and SN+ is highlighted, suggesting that vivid dreams
causing awakenings may indicate both iRBD and SN+. This
underscores the value of a multidimensional approach to
diagnosis.

Interestingly, models based solely on sleep diaries, without
considering actigraphy features, yielded better results. This
finding is supported by the SHAP values analysis, where sleep
efficiency from actigraphy data contradicted the trend. On the
contrary, actigraphy data proved to be the most relevant for
distinguishing the NonHC vs. HC group in the test dataset.

In conclusion, our study provides insights into the potential
use of ACG-N, Diary-N, and RBD-SQ features as alternatives
to TCS-SN. While further research is needed to validate
these findings on a larger and more diverse population, our
results offer promising avenues for emulating TCS diagnosis.
Additionally, the clinical utility of these predictive models

should be assessed in real-world healthcare settings.
Finally, the authors in [31] state that the size of EA remains

stable over time and, therefore, cannot be used to monitor the
progress of neurodegeneration. In order to confirm or reject
this finding and to evaluate the predictive value of TCS-SN
and sleep-based features, we plan to repeat the data acquisition
several times.

A. Study Limitations

Despite the promising results, our study has several limi-
tations. First, the dataset used for this analysis is relatively
small, which may limit the generalizability of our findings.
Second, the cross-sectional nature of the data prevents us
from establishing causal relationships. Longitudinal studies are
needed to investigate the predictive value of these features over
time. Finally, our analysis relies on self-reported sleep diary
data, which could be susceptible to recall bias. Objective sleep
monitoring using wearable devices can provide more accurate
sleep-related features.

V. CONCLUSION

Utilizing a machine-learning-based approach, this study ex-
plored whether objectively and subjectively measured sleep al-
terations could predict the outcomes of TCS-SN. When differ-



entiating participants with normal and pathological echogenic-
ity (in a cross-validation experiment), we achieved 96 % sen-
sitivity and specificity while modeling data from actigraphy,
sleep diary, and RBD-SQ. The performance measures de-
creased when evaluating the model on an independent test set;
specifically, we obtained 67 % sensitivity and 87 % specificity.

Our findings suggest that combining multiple sources of
data, including objective sleep measurements, subjective sleep
diary information, and RBD-SQ scores, can support the es-
timation of echogenic area even in subjects with an inap-
propriate temporal bone window. In general, the combination
of TCS-SN and sleep-based features could present a new
alternative for screening LBDs in the prodromal state.

REFERENCES

[1] S. Chokroverty, “Overview of sleep & sleep disorders,” Indian J Med
Res, vol. 131, no. 2, pp. 126–140, 2010.
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