
Integrating Late Variable Binding with SP-MCTS for Efficient Plan
Execution in BDI Agents

Frantisek Vidensky1∗ a, Frantisek Zboril1∗ b and Petr Veigend 1 c

1Department of Intelligent Systems, Brno University of Technology, Bozetechova 2, Brno, Czech Republic
∗These two authors contributed equally to this work

{ividensky, zborilf, veigend}@fit.vut.cz

Keywords: BDI Agents, Agent Interpretation, AgentSpeak(L), Monte Carlo Tree Search

Abstract: This paper investigates the Late binding strategy as an enhancement to the SP-MCTS algorithm for intention
selection and variable binding in BDI (Belief-Desire-Intention) agents. Unlike the Early binding strategy,
which selects variable substitutions prematurely, Late binding defers these decisions until necessary, aggre-
gating all substitutions for a plan into a single node. This approach reduces the search tree size and enhances
adaptability in dynamic environments by maintaining flexibility during plan execution. We implemented the
Late binding strategy within the FRAg system to validate our approach and conducted experiments in a static
maze task environment. Experimental results demonstrate that the Late binding strategy consistently outper-
forms Early binding, achieving up to 150% higher rewards, particularly for the lowest parameter values of the
SP-MCTS algorithm in resource-constrained scenarios. These results confirm that it is feasible to integrate
Late binding into intention selection methods, opening opportunities to explore its use in approaches with
lower computational demands than the SP-MCTS algorithm.

1 INTRODUCTION

The Belief-Desire-Intention (BDI) model (Rao and
Georgeff, 1995) represents a dominant paradigm in
agent development. Inspired by Bratman’s theory of
intentions (Bratman, 1987), BDI agents mimic human
cognitive processes, enabling sophisticated reasoning,
planning, and decision-making capabilities. This pro-
cess, referred to as practical reasoning, involves se-
lecting goals and determining the means to achieve
them (Wooldridge, 1999).

In BDI-based agent programming languages
(d’Inverno et al., 1998; Winikoff, 2005; Pokahr et al.,
2005; Rao, 1996; Bordini et al., 2007), the agent’s
behaviour is defined by three key mental attitudes:
beliefs, desires, and intentions. Beliefs represent the
agent’s information about its environment and itself.
Desires capture the states the agent aims to achieve,
while intentions embody the agent’s commitments
to specific actions or plans for achieving its desires.
Plans are the means by which the agent modifies its
environment to achieve its goals. A plan is comprised

a https://orcid.org/0000-0003-1808-441X
b https://orcid.org/0000-0001-7861-8220
c https://orcid.org/0000-0003-3995-1527

of steps that may include primitive actions directly al-
tering the environment or subgoals addressed by other
plans.

The execution of a BDI agent adheres to a re-
peated deliberation cycle. This cycle involves up-
dating the agent’s beliefs and goals to reflect the cur-
rent environment, selecting plans for achieving active
goals, and executing the next step of the chosen plans.
For each top-level goal, a plan is selected, forming the
root of an intention, and its steps are sequentially ex-
ecuted. If a step corresponds to a subgoal, a sub-plan
is chosen and added to the intention, and the process
continues recurrently.

Most researchers aiming to improve practical rea-
soning focus on addressing the intention selection
problem. Practical reasoning, as realized in BDI
agents, is operationalized through the deliberation cy-
cle. The intention selection problem refers to the chal-
lenge of determining which intention to progress dur-
ing the current deliberation cycle.

In many BDI architectures, intentions are exe-
cuted in an interleaved manner (Winikoff, 2005; Bor-
dini et al., 2007), enabling concurrent processing but
introducing potential conflicts when steps in one in-
tention block others. Researchers have proposed var-
ious strategies to address these conflicts, including



Summary Information-based techniques (Thangara-
jah et al., 2003; Thangarajah et al., 2011), which rea-
son about pre- and post-conditions, Coverage-based
approaches (Thangarajah et al., 2012; Waters et al.,
2014; Waters et al., 2015), which prioritize inten-
tions most at risk due to environmental changes, and
stochastic methods like Single-Player Monte Carlo
Tree Search (SP-MCTS) (Yao et al., 2014; Yao and
Logan, 2016), which optimize intention selection
through simulation.

Our research group has taken a different approach,
focusing on selecting variable substitutions in the
well-known BDI programming language, AgentS-
peak(L) (Rao, 1996). Its most widely used interpreter,
Jason (Bordini et al., 2007), employs the Early bind-
ing strategy for selecting variable substitutions by de-
fault. This means that substitutions are selected dur-
ing the evaluation of context conditions or the per-
forming of test goals. In contrast, our proposed Late
binding strategy (Zboril et al., 2022; Vidensky et al.,
2023) defers the selection of variable substitutions
until necessary, such as during the execution of ac-
tions. Until that point, the agent maintains a structure
called the context, which contains all valid substitu-
tions. This structure is dynamically updated as the
plan is executed.

Both strategies have been implemented in the
Flexibly Reasoning BDI Agent (FRAg)1 system,
and experimental evaluations (Vidensky et al., 2024)
demonstrated that, despite increased computational
overhead, the Late binding strategy outperformed the
Early binding strategy in most scenarios. These re-
sults highlight the potential of Late binding for im-
proving adaptability in dynamic settings.

Our previous work (Vidensky et al., 2025) ex-
tended the FRAg system by implementing a failure-
handling mechanism inspired by the CAN (Sardina
and Padgham, 2011) system. Experiments revealed
that when combined with the Late binding strategy,
the failure handling mechanism achieved better re-
sults than the Early binding strategy. Moreover, these
results showed that the Early binding strategy can
be effectively integrated with existing approaches.
Building on these findings, we incorporated an SP-
MCTS-based approach (Yao and Logan, 2016) for
intention selection into the FRAg system. This ap-
proach is considered a state-of-the-art solution for ad-
dressing the intention selection problem.

In this paper, we explore the integration of the
Late binding strategy into the SP-MCTS algorithm
for intention selection in BDI agents. Section 2 in-
troduces the Late binding strategy and its advantages
over Early binding. Section 3 describes the SP-MCTS

1https://github.com/VUT-FIT-INTSYS/FRAg

algorithm and its adaptation for action-level intention
selection. Section 4 discusses the limitations of SP-
MCTS, while Section 5 analyses the potential of Late
binding to address computational challenges in inten-
tion selection. The experimental evaluation is pre-
sented in Section 6, and the paper concludes with a
summary of findings and future research directions in
Section 7.

2 LATE VARIABLE BINDING

In BDI agent systems, variable substitution plays
a crucial role in ensuring effective and adaptive
decision-making. Traditionally, BDI agents employ
an Early binding strategy, where variable substitu-
tions are determined when evaluating plan context
conditions or test goals (Rao, 1996). While straight-
forward, this approach can lead to failures in dynamic
environments, as it lacks the flexibility to adapt to
changes occurring after plan selection.

The Late binding strategy, introduced in (Zboril
et al., 2022), with its operational semantics detailed
in (Vidensky et al., 2023), defers variable substitu-
tions until they are strictly necessary, such as during
the execution of actions. Instead of binding variables
at an early stage, the strategy maintains all poten-
tial substitutions within a structure called the context.
This context is dynamically updated during plan ex-
ecution, discarding substitutions that no longer sat-
isfy the agent’s belief base or runtime conditions. By
preserving valid options throughout the plan’s lifecy-
cle, the agent can adapt its behaviour to environmental
changes without restarting plans unnecessarily.

The context is established when a plan is selected
as part of an agent’s intention. Unlike early binding
systems, where variable substitutions are applied im-
mediately, late binding systems maintain all possible
variable substitutions. The context is represented as
a set of possible substitutions called Possible Unifier
Set (PUS) (Zboril et al., 2022), which encompasses
all substitutions consistent with the agent’s current be-
lief base and the context conditions of the selected
plan.

During plan execution, the context is continuously
updated to reflect changes in the environment or the
agent’s beliefs. This process, known as the restriction
(Zboril et al., 2022), systematically removes invalid
substitutions. So, to be more precise, the restriction
operation reduces the PUS to contain only valid sub-
stitutions Specifically, the restriction operation is ap-
plied in the following cases:

• Test Goals: When encountering a test goal, the
context is restricted to retain only substitutions for



Figure 1: A comparison of Early and Late Binding Strate-
gies. The left side illustrates Early binding, where inten-
tions consist of stacks of plans with partially instantiated
variables. In contrast, the right side illustrates Late binding,
which retains uninstantiated plan bodies while maintaining
variable substitutions separately within a context. Taken
from (Vidensky et al., 2025).

which the tested predicate is true in the current be-
lief base. This involves a broad unification opera-
tion (Zboril et al., 2022), which identifies all sub-
stitutions that unify the test goal with the agent’s
beliefs.

• Actions: When performing an action, the context
is restricted to include only substitutions consis-
tent with the action by binding free variables to
specific atoms

By deferring the selection of variable substitutions
until strictly necessary, late binding minimizes the
risk of premature decisions that could lead to plan
failure. This method allows the agent to dynamically
adapt to environmental changes without restarting its
plans.

This dynamic updating mechanism significantly
enhances the robustness of BDI agents by reducing
plan failures and improving adaptability in dynamic
environments. As illustrated in Figure 1, early bind-
ing relies on partially instantiated plans, making in-
tentions more rigid and prone to failure in volatile
conditions. Conversely, late binding dynamically se-
lects substitutions, enabling agents to respond effec-
tively to changes without compromising the progress
of their intentions.

3 ACTION-LEVEL INTENTION
SELECTION WITH SP-MCTS

The Single-Player Monte Carlo Tree Search (SP-
MCTS) algorithm (Schadd et al., 2008) has been
adapted for use in BDI agents as a method for opti-
mizing intention scheduling (Yao et al., 2014). This
adaptation involves applying SP-MCTS to the goal-
plan tree (GPT) (Thangarajah et al., 2011) structure
instead of traditional game states. The goal-plan tree
is a hierarchical representation of the agent’s decision
space. Goals are represented as parent nodes, with

plans associated with their children. Subgoals within
these plans expand into additional child nodes, creat-
ing a layered structure that captures the dependencies
between goals and plans. By simulating various se-
quences of plan execution, SP-MCTS evaluates their
effectiveness in achieving goals, making it a suitable
approach for complex decision-making scenarios in
dynamic environments.

SP-MCTS operates in iterative cycles, each con-
sisting of four key steps:

• Selection: Starting from the root node, the algo-
rithm selects a child node using an adapted ver-
sion of the Upper Confidence Bounds for Trees
(UCT) (Kocsis and Szepesvári, 2006) formula.
This modification balances exploration (searching
unexplored nodes) and exploitation (focusing on
promising nodes) in the context of BDI decision-
making.

• Expansion: A new node is added to the tree by
selecting an unexplored action or goal from the
current node.

• Simulation: A simulated sequence of actions
is performed from the newly added node, using
heuristic-based action selection to estimate out-
comes.

• Backpropagation: The simulation results are
propagated back through the selected path in the
tree, updating the values of visited nodes.

This cycle allows SP-MCTS to iteratively refine
its decision-making process, building a tree that cap-
tures the agent’s possible future states and their asso-
ciated outcomes. The algorithm uses two key param-
eters: α, which determines the number of node ex-
pansions (iterations), and β, which specifies the num-
ber of simulations conducted at each node. These pa-
rameters enable fine-tuning of the algorithm’s perfor-
mance, balancing computational effort and the quality
of decision-making.

While the original SP-MCTS approach applied to
entire plans, its adaptation in the Action-Level Inten-
tion Selection (SA) algorithm (Yao and Logan, 2016)
introduces significant enhancements. Specifically, SA
modifies the goal-plan tree (GPT) to include not only
goals and plans but also primitive actions within those
plans. This refinement enables action-level interleav-
ing, addressing conflicts between steps of different
plans more effectively.

By simulating these action sequences within the
enhanced goal-plan tree, the SA algorithm identifies
potential conflicts and selects the most promising ac-
tions to achieve goals efficiently. Each node in the
tree represents a unique state of the environment and



the agent’s progress. Simulations evaluate the poten-
tial outcomes of different action sequences, and the
results are backpropagated to refine the tree. This
enables the SA algorithm to dynamically adapt its
decision-making process to changing environmental
conditions.

These advancements underline the versatility of
SP-MCTS in addressing conflicts and enhancing in-
tention selection in BDI agents. Recent research has
further explored the use of SP-MCTS in multi-agent
environments (Dann et al., 2020; Dann et al., 2021;
Dann et al., 2022). These extensions demonstrate the
adaptability of SP-MCTS and its potential for broader
applications in dynamic and collaborative scenarios.

4 LIMITATIONS AND
CHALLENGES OF THE SA
ALGORITHM

While innovative and effective in addressing conflicts
at the action level in single-agent environments, the
SA algorithm presents several limitations and chal-
lenges that must be considered for practical imple-
mentation.

One notable limitation is the necessity of ex-
plicitly defining pre- and post-conditions for actions.
These conditions are crucial for evaluating the fea-
sibility and consequences of action sequences dur-
ing simulations. However, in programming environ-
ments like AgentSpeak(L), which do not natively re-
quire such specifications, this represents a significant
departure from standard practices and could increase
the development effort.

Another limitation lies in the reliance on proposi-
tional logic for goal-plan trees. While this approach
is computationally efficient, it limits expressiveness in
scenarios requiring more complex reasoning. Extend-
ing the algorithm to support predicate logic would al-
low for richer representations and introduce signifi-
cant computational overhead, making its scalability
more challenging.

Finally, the computational overhead associated
with the algorithm, particularly the effort required to
build and traverse the SP-MCTS search tree, is non-
negligible. Although the authors claim that the com-
plexity is manageable in their scenarios, dynamic en-
vironments requiring frequent updates may amplify
this overhead, necessitating trade-offs between com-
putational efficiency and the optimality of intention
selection.

5 GOAL-PLAN TREE FOR LATE
VARIABLE BINDING
STRATEGY

Using the Goal-Plan Tree (GPT) structure for pro-
grams based on predicates can be computationally ex-
pensive, as it requires creating a separate node for
each possible variable substitution. This approach,
corresponding to Early binding, increases the number
of nodes in the GPT, leading to higher computational
costs in the SP-MCTS algorithm.

In contrast, the Late binding strategy aggregates
all substitutions for a plan into a single node, reducing
the number of nodes that must be traversed and sim-
ulated. This approach enhances computational scala-
bility by minimizing redundant evaluations of invalid
substitutions and makes the strategy particularly suit-
able for scenarios with many possible substitutions.

During simulation, substitutions are dynamically
selected from the context, which maintains these sub-
stitutions. This approach ensures efficient use of the
computational budget defined by β, allowing the algo-
rithm to explore multiple possibilities while reducing
redundant simulations.

To illustrate this concept, consider a simple exam-
ple of an agent participating in a trading market for
collectable cards. The agent’s goal is to find a match-
ing offer to satisfy a given demand. A plan for the
agent, written in AgentSpeak(L), can be expressed as
follows:

+!sell :wants(Buyer , Card , Max_Price)
<- ?offers(Seller , Card , Price);

Price <=Max_Price;
sell(Seller , Buyer , Card , Price);
!sell.

The environment includes one seller, adam, and
two buyers, betty and clara, interested in the same
card. The agent’s belief base (BB) is defined as:

offers(adam , cd1, 85).
wants(betty , cd1, 60).
wants(clara , cd1, 90).

The example GPT can be seen in Figure 2. The
trees are simplified as there is only one plan; under the
goal node, child nodes represent the variable bindings
created while evaluating the context condition. The
plan nodes are truncated at the action that may fail,
excluding subsequent actions for simplicity.

Figure 2 illustrates the difference between Early
and Late binding strategies using the goal-plan tree.
In the Early binding strategy (Figure 2a), each substi-
tution generates a separate node, resulting in a larger



(a) Early binding: Separate nodes for each substitution. (b) Late binding: Unified node with all substi-
tutions.

Figure 2: Illustration of GPT construction under Early and Late binding strategies. Early binding creates multiple nodes for
each substitution, whereas Late binding generates a unified node.

tree. For example, the agent must evaluate substitu-
tions for both betty and clara, even though betty’s plan
will fail due to price constraints. This leads to unnec-
essary computational effort during simulations.

In contrast, the Late binding strategy (Figure 2b)
aggregates all potential substitutions into a single
node. During plan execution, a restriction operation
systematically refines the context by removing sub-
stitutions that no longer satisfy the belief base or plan
conditions. For example, when the price constraint
fails, the invalid substitution for betty is discarded.

The Late binding strategy offers several advan-
tages:

• Reduced Tree Size: By aggregating substitu-
tions, Late binding decreases the number of nodes
in the GPT, improving computational efficiency.

• Dynamic Flexibility: Substitutions are evaluated
only when necessary, allowing the agent to adapt
to environmental changes.

• Improved Robustness: By deferring decisions,
Late binding reduces the likelihood of plan fail-
ures caused by premature substitutions.

We hypothesize that the Late binding strategy will
achieve better results than the Early binding strategy
under identical parameter settings for the SA algo-

rithm. By reducing the number of nodes that need to
be traversed, the algorithm can explore more aggre-
gated nodes within the same number of steps, poten-
tially yielding an optimal outcome. This hypothesis
will be validated through experimental evaluation.

We further anticipate that leveraging the Late
binding strategy for SP-MCTS will prove particularly
beneficial in scenarios involving a large number of
possible variable substitutions. In such cases, Early
binding requires the generation of separate nodes for
each substitution, leading to exponential growth in
the size of the goal-plan tree due to the combinato-
rial nature of substitutions across multiple variables.
Late binding addresses this by dynamically narrow-
ing down substitutions during plan execution, avoid-
ing unnecessary computational overhead and invalid
paths. This dynamic and adaptive behavior aligns
with the requirements of complex and dynamic envi-
ronments, where decision-making must remain flexi-
ble and efficient. Consequently, Late binding is ex-
pected to enhance the scalability and robustness of
SP-MCTS in addressing such challenges effectively.



6 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of
the SP-MCTS algorithm, focusing on its performance
with the Late binding strategy. The primary objective
of these experiments is to highlight the advantages of
reducing the number of nodes expanded and simu-
lated by the algorithm and the resulting improvements
in the quality of the achieved results. The evaluation
was conducted within a static maze environment, us-
ing varying values for parameters α (number of itera-
tions) and β (number of simulations per iteration).

6.1 Environment Description

The maze environment is designed as a grid-based
world, where an agent performs tasks involving the
collection of materials. Materials such as gold, silver,
or bronze can be found in various positions across the
grid, and the agent’s goal is to collect specific combi-
nations of these materials in a defined sequence. The
environment applies specific rules for material degra-
dation, where materials degrade to lower-value ver-
sions, and evaluates the agent’s performance based on
its ability to complete tasks.

Grid Layout The environment consists of a grid
with fixed dimensions (6x6). Each position is
uniquely identified by its coordinates [X, Y] and can
be associated with a material. The materials present
on the grid are:

• Gold: The highest-value material, which de-
grades into silver when picked.

• Silver: An intermediate material which degrades
into bronze when picked.

• Bronze: When picked, the lowest value material
degrades to dust.

• Dust: A neutral material with no value, represent-
ing the final stage of degradation.

Material Degradation Each time the agent picks a
material, it degrades according to the following rules:

• gold → silver → bronze → dust.

For example, if the agent picks a gold material, it
degrades to silver and remains in the same position,
waiting for further collection. Once a material de-
grades to dust, it can no longer be collected or con-
tributed to task completion.

Tasks and Goals The environment provides pre-
defined tasks, each represented as a combination of

three materials in a specific order. For example, a
task might require the agent to collect three instances
of gold (gold, gold, gold) or a combination of
gold, silver and bronze (gold, silver, bronze).
After collecting three materials, the agent’s collected
combination is evaluated against the predefined tasks.
The agent is rewarded with a point if the combination
matches any tasks. After collecting three materials,
the agent’s collected combination is evaluated against
the predefined tasks. The agent is rewarded with a
point if the combination matches any tasks.

Agent Interaction The agent interacts with the en-
vironment using two primary actions:

• go(Direction): Moves the agent to an adjacent
position in the specified direction (up, down, left,
right).

• pick: Picks the material at the agent’s current po-
sition, adding it to the agent’s collection bag and
triggering material degradation.

The agent’s behaviour is guided by its belief base,
which includes information about its position, per-
ceived materials, and the current task.

Evaluation and Restart When the agent collects
three materials, its bag is evaluated. If the collected
combination matches a predefined task, the agent is
rewarded with one point. Regardless of success or
failure, the agent’s bag is reset, and a new round be-
gins. This process continues until the agent completes
all tasks or exhausts the available materials.

The maze environment tests the agent’s ability
to adapt strategies by balancing navigation, resource
management, and task adherence for optimal perfor-
mance.

Suitability of the Material Collection Task The
material collection task was chosen for its ability
to highlight the differences between Early and Late
binding strategies effectively. Unlike Early binding,
which prematurely commits to a specific task, Late
binding dynamically narrows down the set of viable
tasks based on current conditions, maintaining flexi-
bility throughout the decision-making process. This is
particularly evident when the agent collects material
and evaluates which tasks remain achievable based
on the collected prefix. Instead of adopting a sin-
gle task immediately, Late binding refines the task
space to those still compatible with the agent’s cur-
rent progress and belief base.



Table 1: Rewards achieved by Early and Late variable bind-
ing strategies for different parameter settings of the SP-
MCTS algorithm (α and β).

α β Early Late
5 5 2 5

10 5 3 5
10 10 5 6
15 10 5 5
15 15 5 6
20 15 4 6
20 20 6 7
25 20 6 7

6.2 Evaluation Results

The evaluation results for the Early and Late bind-
ing strategies are summarized in Table 1. The table
highlights the rewards achieved for various parameter
combinations. All experiments were conducted with
a limit of 60 agent steps per simulation. The Late
strategy consistently outperforms the Early strategy,
particularly for smaller values of α and β.

6.2.1 Analysis

The experimental results demonstrate that the Late
binding strategy consistently outperforms the Early
binding strategy across most tested parameter config-
urations. This advantage is particularly evident un-
der constrained resource settings. For example, with
α = 5 and β = 5, the Late binding strategy achieved
a reward of 5 points, compared to only 2 points for
the Early binding strategy, an improvement of 150%.
This trend highlights the Late binding strategy’s abil-
ity to explore the decision space more effectively
within limited computational budgets.

While some anomalies were observed, such as oc-
casional performance drops at higher parameter val-
ues, these can be attributed to the stochastic nature
of SP-MCTS and the limited number of experimen-
tal runs. For example, a suboptimal random choice
during simulation or an unfinished task within the al-
located steps may have contributed to these results.
Increasing the number of experimental repetitions
would provide a more robust statistical basis for these
findings.

Overall, the Late binding strategy demonstrates
a clear advantage in strengthening higher-quality so-
lutions and efficiently navigating the search space.
These results strongly support the hypothesis that
Late binding enhances performance in scenarios with
restricted resources and dynamic environments.

7 CONCLUSIONS

This paper presented an extension to the FRAg sys-
tem by integrating the Late binding strategy into the
SP-MCTS algorithm within the FRAg system, target-
ing variable binding and intention selection in BDI
agents. The experimental results demonstrated that
the Late binding strategy significantly outperforms
the Early binding strategy, particularly under condi-
tions with limited computational resources or small
parameter values for α (iterations) and β (simula-
tions).

The Late binding strategy’s ability to aggregate
multiple variable substitutions into a single node re-
duces the size of the search tree. It facilitates a more
focused exploration of the decision space. This ap-
proach is expected to improve adaptability in dynamic
environments by maintaining a broader range of op-
tions for variable substitutions throughout the execu-
tion of the plan, allowing agents to respond more ef-
fectively to changes.

While SP-MCTS represents a state-of-the-art ap-
proach to intention selection, its computational de-
mands can make it unsuitable for scenarios re-
quiring rapid decision-making or environments with
highly constrained computational resources. Fu-
ture research could explore integrating Summary
Information-based and Coverage-based approaches to
mitigate these limitations, potentially offering a more
balanced trade-off between efficiency and adaptabil-
ity in such contexts.

Additionally, a comparative analysis of the FRAg
system against other BDI frameworks in more com-
plex task environments would provide valuable in-
sights into its practical advantages and areas for im-
provement. This direction could further validate the
proposed Late binding strategy’s robustness and ap-
plicability across diverse scenarios.

ACKNOWLEDGEMENTS

This work has been supported by the internal
BUT project FIT-S-23-8151. Computational re-
sources were provided by the e-INFRA CZ project
(ID:90254), supported by the Ministry of Education,
Youth and Sports of the Czech Republic.

REFERENCES

Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007).
Programming multi-agent systems in AgentSpeak us-
ing Jason, volume 8. John Wiley & Sons.



Bratman, M. (1987). Intention, plans, and practical reason.
Harvard University Press.

Dann, M., Thangarajah, J., Yao, Y., and Logan, B. (2020).
Intention-aware multiagent scheduling. In Proceed-
ings of the 19th International Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS
’20, page 285–293, Richland, SC. International Foun-
dation for Autonomous Agents and Multiagent Sys-
tems.

Dann, M., Yao, Y., Alechina, N., Logan, B., and Thangara-
jah, J. (2022). Multi-agent intention progression with
reward machines. In Raedt, L. D., editor, Proceed-
ings of the Thirty-First International Joint Conference
on Artificial Intelligence, IJCAI-22, pages 215–222.
International Joint Conferences on Artificial Intelli-
gence Organization. Main Track.

Dann, M., Yao, Y., Logan, B., and Thangarajah, J.
(2021). Multi-agent intention progression with black-
box agents. In Zhou, Z.-H., editor, Proceedings of the
Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pages 132–138. International
Joint Conferences on Artificial Intelligence Organiza-
tion. Main Track.

d’Inverno, M., Kinny, D., Luck, M., and Wooldridge, M.
(1998). A formal specification of dmars. In Intelligent
Agents IV Agent Theories, Architectures, and Lan-
guages: 4th International Workshop, ATAL’97 Provi-
dence, Rhode Island, USA, July 24–26, 1997 Proceed-
ings 4, pages 155–176. Springer.

Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-
carlo planning. In Fürnkranz, J., Scheffer, T., and
Spiliopoulou, M., editors, Machine Learning: ECML
2006, pages 282–293, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Pokahr, A., Braubach, L., and Lamersdorf, W. (2005).
Jadex: A BDI Reasoning Engine, pages 149–174.
Springer US, Boston, MA.

Rao, A. S. (1996). Agentspeak(l): Bdi agents speak out
in a logical computable language. In Van de Velde,
W. and Perram, J. W., editors, Agents Breaking Away,
pages 42–55, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Rao, A. S. and Georgeff, M. P. (1995). Bdi-agents: From
theory to practice. In Lesser, V. and Gasser, L., editors,
Proceedings of the First International Conference on
Multiagent Systems (ICMAS), volume 95, pages 312–
319, Menlo Park, CA. AAAI Press.

Sardina, S. and Padgham, L. (2011). A bdi agent pro-
gramming language with failure handling, declarative
goals, and planning. Autonomous Agents and Multi-
Agent Systems, 23:18–70.

Schadd, M. P. D., Winands, M. H. M., van den Herik,
H. J., Chaslot, G. M. J. B., and Uiterwijk, J. W. H. M.
(2008). Single-player monte-carlo tree search. In
van den Herik, H. J., Xu, X., Ma, Z., and Winands,
M. H. M., editors, Computers and Games, pages 1–
12, Berlin, Heidelberg. Springer Berlin Heidelberg.

Thangarajah, J., Padgham, L., and Winikoff, M. (2003).
Detecting & avoiding interference between goals in
intelligent agents. In Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence,

IJCAI’03, page 721–726, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Thangarajah, J., Padgham, L., and Winikoff, M. (2011).
Computationally effective reasoning about goal inter-
actions. Journal of Automated Reasoning, 47(1):17–
56.

Thangarajah, J., Sardina, S., and Padgham, L. (2012). Mea-
suring plan coverage and overlap for agent reasoning.
In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems - Vol-
ume 2, AAMAS ’12, page 1049–1056, Richland, SC.
International Foundation for Autonomous Agents and
Multiagent Systems.

Vidensky, F., Zboril, F., Beran, J., Koci, R., and Zboril, F. V.
(2024). Comparing variable handling strategies in bdi
agents: Experimental study. In Proceedings of the
16th International Conference on Agents and Artifi-
cial Intelligence - Volume 1: ICAART, pages 25–36.
INSTICC, SciTePress.

Vidensky, F., Zboril, F., Koci, R., and Zboril, F. V. (2023).
Operational semantic of an agentspeak(l) interpreter
using late bindings. In Proceedings of the 15th In-
ternational Conference on Agents and Artificial In-
telligence - Volume 1: ICAART, pages 173–180. IN-
STICC, SciTePress.

Vidensky, F., Zboril, F., Koci, R., and Zboril, F. V. (2025).
Advanced evaluation of variable binding strategies in
bdi agents with integrated failure handling. Lecture
Notes in Artificial Intelligence. Accepted for publica-
tion.

Waters, M., Padgham, L., and Sardina, S. (2014). Evaluat-
ing coverage based intention selection. In Proceedings
of the 2014 International Conference on Autonomous
Agents and Multi-Agent Systems, AAMAS ’14, page
957–964, Richland, SC. International Foundation for
Autonomous Agents and Multiagent Systems.

Waters, M., Padgham, L., and Sardina, S. (2015). Improv-
ing domain-independent intention selection in bdi sys-
tems. Autonomous Agents and Multi-Agent Systems,
29(4):683–717.

Winikoff, M. (2005). Jack™ Intelligent Agents: An Indus-
trial Strength Platform, pages 175–193. Springer US,
Boston, MA.

Wooldridge, M. (1999). Intelligent Agents, page 27–77.
MIT Press, Cambridge, MA, USA.

Yao, Y. and Logan, B. (2016). Action-level intention selec-
tion for bdi agents. In Proceedings of the 2016 Inter-
national Conference on Autonomous Agents & Multi-
agent Systems, AAMAS ’16, page 1227–1236, Rich-
land, SC. International Foundation for Autonomous
Agents and Multiagent Systems.

Yao, Y., Logan, B., and Thangarajah, J. (2014). Sp-mcts-
based intention scheduling for bdi agents. In Proceed-
ings of the Twenty-First European Conference on Ar-
tificial Intelligence, ECAI’14, page 1133–1134, NLD.
IOS Press.

Zboril, F., Vidensky, F., Koci, R., and Zboril, V. F. (2022).
Late bindings in agentspeak(l). In Proceedings of the
14th International Conference on Agents and Artifi-
cial Intelligence - Volume 3: ICAART, pages 715–724.
INSTICC, SciTePress.


