
Towards Identification of Network Applications in
Encrypted Traffic

1st Ivana Burgetová
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic
burgetova@fit.vutbr.cz

2nd Ondřej Ryšavý
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

rysavy@fit.vutbr.cz

3rd Petr Matoušek
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic
matousp@fit.vutbr.cz

Abstract—Network traffic monitoring for security threat de-
tection and network performance management is challenging
because most communications are protected by encryption.
This paper addresses the problem of identifying applications
associated with Transport Layer Security (TLS) network con-
nections. We evaluate three primary approaches to classifying
TLS traffic: fingerprinting methods, SNI-based identification, and
machine learning-based classifiers. Each method has strengths
and limitations: fingerprinting relies on a regularly updated
database of known hashes, SNI is vulnerable to obfuscation
or missing information, and an AI technique such as machine
learning requires sufficient labelled training data. To support
research in this area, we have also created a novel dataset of
labelled TLS communications for popular desktop and mobile
applications. The comparison of these methods that we present
highlights the challenges of identifying individual applications, as
TLS properties are significantly shared across applications. The
simpler task of identifying a collection of candidate applications
still provides valuable insights for network monitoring and can be
achieved with high accuracy by all methods considered. Finally,
we suggest practical use cases and identify future research
directions to further improve application identification methods.

Index Terms—TLS fingerprinting, JA4, encrypted traffic, ap-
plication identification, machine learning

I. INTRODUCTION

Identifying and classifying Transport Layer Security (TLS)
communications has become an increasingly difficult prob-
lem in modern network environments. With the widespread
adoption of encryption protocols such as TLS, a significant
portion of network traffic is now encrypted, rendering tra-
ditional monitoring tools less effective. As a result, network
administrators struggle to gain visibility into network activity,
making it difficult to detect security threats, enforce policies,
and optimize network performance.

The complexity of identifying applications in TLS commu-
nications is due to several factors. First, encryption does not
allow for the content inspection previously used for application
identification. Second, the new version of TLS uses encryption
to protect parameters previously used for application identifi-
cation, such as Server Name Indication (SNI) and certificates.
To address this issue, several methods for classifying TLS
traffic have been proposed:

• TLS fingerprinting. It relies on unique patterns in the en-
crypted data to match connections with known application

behavior. However, the TLS fingerprinting often struggles
with new or updated applications, where the patterns can
be significantly different.

• Server Name Identification. SNI-based identification uses
the server name information available in the TLS hand-
shake to identify the communicating application. How-
ever, the new proposal considers the use of Encrypted
Server Name Indication (ESNI) to increase user privacy.
ESNI keeps the SNI secret by encrypting the SNI part of
the client hello message.

• Machine Learning Classification. ML-based classifiers
use statistical models trained on various features of TLS
traffic, such as negotiated security parameters, to predict
the associated application. ML-based methods can adapt
to new and changing traffic patterns, but require signifi-
cant training data and computational resources.

The ultimate goal of these techniques is to accurately iden-
tify the application associated with each TLS connection. Due
to the inherent challenges, it is not always possible to identify
a single application. In such cases, an acceptable solution may
be to provide a (ranked) list of possible applications associated
with the connection, allowing network administrators to make
informed decisions based on likely candidates.

A. Contribution

The main contributions are (i) the introduction of a novel
annotated dataset of TLS communications from common
desktop and mobile applications, enabling further research on
traffic classification; (ii) a comprehensive comparison of three
approaches to identify encrypted traffic, i.e., TLS fingerprint-
ing, ML-based methods, and SNI matching, and evaluation
of their coverage, accuracy, and feasibility of deployment;
(iii) identification of challenges in TLS application detection
due to common TLS properties among applications; and (iv)
discussion of possible application use cases and future work
to improve the accuracy of these methods.

B. Structure of the paper

The structure of the paper is as follows: Section II presents
related work, providing an overview of previous studies that
address the same problem as this paper. Section III describes
the principles of TLS encryption, explaining the key features



of the TLS handshake and how they are used for fingerprinting.
Section IV describes the experimental setup, including the
process of creating new datasets and the methodology used
to evaluate the different identification methods. Section V
discusses the experiments and results, providing a comprehen-
sive analysis and addressing practical considerations. Finally,
section VI summarizes the paper with concluding remarks and
suggestions for future research.

II. RELATED WORK

Classification of encrypted traffic and identification of net-
work applications have been researched since the widespread
adoption of encrypted communication protocols. This section
gives an overview of the major work on identification methods,
primarily TLS fingerprinting, machine learning, and neural
networks, which have received significant attention recently.

Velan et al. in [1] give a brief overview of the available
methods for classifying encrypted traffic. The paper divides
classification approaches into payload-based and feature-based
techniques. Since the techniques discussed in the paper have
not been applied to the same dataset, it is not easy to
compare their effectiveness. This is a major drawback of many
published classification techniques, as they are only applied
to private datasets, which limits an objective evaluation. Our
work analyzes several identification techniques and evaluates
them on the same publicly available datasets. We also provide
a detailed explanation of their advantages and disadvantages.

The use of TLS fingerprints for malware detection in
encrypted traffic was addressed by Anderson et al. in [2]. They
extract the cipher suites, the TLS extensions, and the length of
the client’s public key from the TLS client/server hello records.
In addition to the TLS attributes, they observe flow statistics,
such as packet lengths, inter-arrival times, byte distribution.
By combining these attributes on a large dataset of malicious
and legitimate TLS flows, they are able to achieve 99.6%
accuracy in classifying malware. When using TLS attributes
alone, accuracy ranges from 63% to 100%.

Machine learning detection of encrypted malware commu-
nications was also investigated by De Lucia and Cotton [3].
The authors applied a support vector machine (SVM) and
a convolutional neural network (CNN) to streams extracted
from captured TLS connections. As features they used record
size, type, and direction. Their results show high accuracy,
but they do not discuss important issues such as similarity
of TLS features, overlap of malware families, etc. In contrast
to their approach, our work focuses on identifying network
applications in encrypted traffic rather than malware families.

The application of machine learning and deep learning
to the identification of encrypted traffic is also explored by
Barut et al. [4]. The authors combine flow metadata (port
numbers, payload size, bytes transferred) with TLS features to
classify encrypted application traffic. They use random forest
and k-NN classifiers to select features. However, the best RF
classifier selects the source port number as the most important
feature, which is a value randomly generated by the operating
system. Therefore, its use for classification is questionable.

For TLS features, they use both statistical data (the number of
cipher suites, extensions, key lengths, etc.) and pre-processed
lists of cipher suites and extensions. To use the CNN classifier,
the authors transform the input data to overcome the bias due
to the imbalance of the data set. Their conclusion shows the
importance of TLS cipher suites for application identification,
which is a part of TLS fingerprints.

In [5], Anderson and McGrew examine the evolution of TLS
usage in applications over time. They track the use of different
TLS versions, cipher suites, and extensions, and collect session
data such as associated processes, destination IP addresses,
and ports. They cluster similar fingerprints using Levenshtein
distance. While their work focuses on general TLS trends, our
study focuses on application identification.

Fingerprint overlap was addressed by Anderson and Mc-
Grew in [6]. They extend TLS fingerprinting to include the
destination address, port, and SNI so that their fingerprints are
more accurate using the destination context. This is similar
to server fingerprinting: JA3S and JA4S hashes. We also
use the server attributes along with the SNI values. The
authors measure the similarity between fingerprints using
Levenshtein distance and add weights to the attributes based
on the information gain ratio. Rather than identifying families
of applications as in [6], our work attempts to identify the
individual applications where possible. In the case of shared
fingerprints, we compute the most likely one or present a set
of matching applications.

Our paper extends the previous work of Matousek et al. [7],
which investigated the reliability of TLS fingerprints for mo-
bile application identification. We add the comparison of JA4
fingerprints with ML techniques and SNI matching to evaluate
these approaches for TLS classification. To the best of our
knowledge, we have not found any published work comparing
machine learning approaches with TLS fingerprinting.

Another popular direction for identifying encrypted traffic
are AI techniques such as deep learning, which using CNN
[8], [9] or RNN classifiers [10]. Deep learning approaches,
unlike TLS fingerprinting or machine learning, work with the
full payload, i.e., they encode incoming packet payloads into
vectors or images that are then used for training and testing.
While the authors claim to achieve a high levels of accuracy,
they ignore many important issues related to the nature of the
encrypted data. First, they treat the input data as uninterpreted,
without distinguishing between a packet header and a payload.
This has a significant impact on the stability of the model, as
encrypted traffic typically has a different distribution of the
payload depending on the negotiated algorithm, e.g., HTTPS
transmissions would have different characteristics between the
same hosts if a different encryption algorithm is chosen. In
addition, different applications transmit different amounts of
data, e.g., an encrypted file transfer has much more data than
an encrypted email. This results in an unbalanced training
dataset that needs to be artificially normalized. Another prob-
lem with modelling full-packet payloads is the huge amount
of processing data. For example, the popular ISCX dataset
contains 21 GB of data (incl. payload), but only 2,436 TLS



connections. Therefore, storing and processing the full payload
is not feasible for real-world networks, so the TLS-based
methods are more preferable for practical use.

The previously cited papers mostly use the VPN-nonVPN
dataset (ISCXVPN2016)1 for experiments and evaluation.
However, this dataset was created in 2016, before the new
encryption algorithms and standards were adopted (e.g., TLS
1.3). Therefore, the classification models trained on this dataset
do not correspond to current encrypted transmissions. For
this reason, we provide our own annotated dataset of recent
encrypted communications, see Section IV-D. For comparison,
we also include results from the ISCX dataset.

III. TLS ENCRYPTION

Transport Layer Security (TLS) [11], [12] is a protocol
defined on top of the transport layer that provides encryption,
data integrity, and authentication for application protocols.
Typically, TLS is implemented on top of TCP. After a TCP
connection is established, the TLS client and server perform
a TLS handshake where they negotiate security parameters
to establish a secure TLS channel. The TLS handshake is an
essential part of the TLS fingerprint, specifically the Client
Hello and Server Hello packets, which contain a list of cipher
suites, extensions, and other parameters supported by the client
and server. TLS defines a large number of possible parameter
values. Their combinations represent a distinctive feature of
the client or server that is used for application fingerprinting.

The TLS handshake data is sent unencrypted. Once the TLS
handshake is complete, subsequent packets between the client
and server are encrypted, see Figure 1.

TCP Syn

TCP Syn + Ack

Ack

Client Hello

Server Hello + Certificate + Done

Client KeyExchange + Change Cipher 

Spec, Finished

Change Cipher Spec, Finished

Encrypted Data

Encrypted Data

Client Server

TCP 

handshake

TLS 

handshake

TLS 1.2 Handshake

TCP Syn

TCP Syn + Ack

Ack

Client Hello, Client Key Share

Server Hello, Server Key Share, 

Certificate, Finished

Encrypted Data

Encrypted Data

Client Server

TCP 

handshake

TLS 

handshake

TLS 1.3 Handshake

application 

data

application 

data

Fig. 1: TLS handshake version 1.2 and 1.3

A. TLS Features

To identify encrypted applications, there are three sources of
features for classification models: (a) TLS attributes extracted
from the TLS handshake, (b) metadata about the TLS flow
(e.g., number of transmitted bytes, packets, duration), and (c)
the full packet payload2. The TLS fingerprinting and machine
learning presented in this paper use the first method, so we

1See https://www.unb.ca/cic/datasets/vpn.html [Sept 2024].
2The use of packet payload in case of encrypted communication is limited

because most of the data in the packet is encrypted and therefore does not
provide any information for analysis.

briefly introduce common TLS attributes that form JA3/JA4
fingerprints3 used in our research.

• Version. The version of the TLS handshake protocol.
• A list of cipher suites. It includes possible combinations

of a key exchange method, algorithms for authentication,
encryption, and data integrity. Valid combinations are
standardized by IANA4. The current IANA cipher suite
list contains 351 different combinations.
The cipher suite list may contain random GREASE values
[13] for client or server compatibility testing. These
values introduce instability into TLS fingerprinting, and
are therefore excluded from the fingerprint calculation.

• A list of extensions. TLS extensions define additional TLS
features. There are approximately 63 different extensions.

• Supported Groups (SG). This TLS extension specifies the
named groups that the client supports for key exchange.
They are ordered from most preferred to least preferred.

• Elliptic Curve Point Format (EC Format). It specifies
the encoding supported by the client for transmitting EC
values.

• Server Name Indication (SNI). The SNI specifies a do-
main name of the server that the client is contacting [14].
The SNI is not a part of the TLS fingerprint, but plays
an important role in annotating the requested service.
However, it is only useful for application identification
when the client is contacting a fixed service, such as a
weather forecast server. In the case of web browsers, the
SNI value changes with each new web server requested.

• Application Layer Protocol Negotiation (ALPN). If mul-
tiple application protocols are supported by a single
server, the client and server must negotiate an application
protocol to be used for each connection [15].

• Supported Versions. This extension contains a list of TLS
versions supported by client, ordered by preference [12].

• Signature Algorithms. A list of supported hash algorithms
used for signatures.

Table I presents different sets of TLS attributes for the TLS
client (JA3, JA4) and the TLS server (JA3S, JA4S). It shows

TLS Attribute JA3 JA3S JA4 JA4S
TLS/QUIC protocol x x
Handshake Version x x x x
Cipher Suites x x x x
Extensions x x x x
Supported Groups x
EC Format x
SNI
ALPN x x
Supported Versions x x
Signature Algorithms x

TABLE I: TLS attributes used in JA3 and JA4 fingerprints

which TLS attributes are shared by different types of TLS
fingerprints. The TLS cipher suites are ordered for JA4/S,
while JA3/S keeps the original order. This plays a role when
using JA3 or JA4 fingerprints for application identification.

3See https://blog.foxio.io/ja4+-network-fingerprinting [Sept 2024].
4See IANA TLS Parameters.



B. TLS Attributes Characteristics
We analyzed the uniqueness and importance of TLS at-

tributes. To evaluate the importance of TLS attributes, we
use entropy, which represents the degree of uncertainty of
the value in the whole range of possible values. This means
that attributes with higher entropy contribute more to the
uniqueness of the fingerprint and help to better identify the
application. Low entropy means that many TLS connections
have the same attribute value, in which case the attribute does
not help much in distinguishing applications.

Table II contains the entropy of TLS attributes in the MDA
and ISCX datasets (see Section IV-D). The MDA dataset
contains 21,301 TLS connections. After filtering out incom-
plete connections and connections to analytics and advertising
servers, we obtained 16,427 connections from 77 different
applications. The table shows the number of unique values
for the attribute, the percentage of connections containing an
empty value for the attribute, and the entropy. For comparison,
we have also included values from the ISCX dataset. This
dataset contains 1,494 TLS connections from 16 applications.
Its values are separated by a slash (/) in the table.

TLS Attribute Unique Empty (%) Entropy
TLS Version 1 / 3 0 / 0 0 / 0.09
Client Cipher Suites (unsorted) 35 / 22 0 / 0 0.48 / 0.81
Client Cipher Suites (sorted) 31 / 24 0 / 0 0.41 / 0.81
Client Extensions (unsorted) 8202 / 28 0 / 0 0.73 / 0.79
Client Extensions (sorted) 59 / 23 0 / 0 0.57 / 0.79
EC Format 2 / 3 0.97 / 0.92 0.22 / 0.46
SNI 731 / 116 0.0004 / 0.23 0.86 / 0.70
ALPN 10 / 7 0.10 / 0.58 0.33 / 0.70
Client Supported Versions 48 / 1 0.13 / 1 0.83 / 0
Signature Algorithms 17 / 8 0 / 0.2 0.45 / 0.68
Server Cipher Suites 11 / 22 0 / 0 0.62 / 0.71
Server Extensions (unsorted) 53 / 40 0 / 0 0.52 / 0.58
Server Supported Versions 3 / 1 0.298 / 1 0.59 / 0

TABLE II: Entropy of TLS features in the MDA/ISCX datasets

As expected, the most important TLS attributes for finger-
printing are SNI, cipher suites, and extensions. The client
supported versions have a high entropy, but there are about
13% of TLS connections with the empty value. The TLS
version field contains only one value for the MDA dataset,
so it is not important.

We can see a difference between the MDA dataset created in
2024 and the ISCX dataset created in 2016. Due to the removal
of different cipher suites and the addition of new extensions,
the numbers are slightly different. We can see that server or
client supported versions are empty in the ISCX.

IV. TESTING ENVIRONMENT

This section describes our environment for automated gen-
eration and annotation of TLS-based application communi-
cations, which includes an Android emulator for running
application packages and a Windows-based virtual sandbox for
desktop applications. Both tools capture network communica-
tions in PCAP files and label connections based on application
processes. We focus on Android and Windows applications
due to their market dominance, although applications from
other environments can be similarly analyzed.

A. Emulation of Mobile Applications

To generate the TLS fingerprints of mobile applications,
we have developed a tool5 that emulates the behavior of
mobile apps using the Android Virtual Device (AVD). Our
tool downloads an APK file containing the mobile app and
installs it on the virtual device. We then emulate its behavior
using the ADB shell and the monkey command. Typically,
the app opens a number of connections to the application
server, which are captured using tshark. The extracted TLS
connections are then parsed for TLS Client and Server Hellos
and fingerprints created. The tool generates JA3/S, JA4/S, and
JA4X fingerprints, which are stored in the fingerprint database.
The output forms a part of the MDA Dataset as described in
Section IV-D.

B. Sandboxing Windows Applications

We captured TLS connections from desktop applications
by running them in a sandboxed Windows environment. We
capture all network communications from the host and filter
out only application-related connections by monitoring open
sockets. This approach allows us to automatically tag each
communication with the corresponding process name. We
created a dataset of 42 popular Windows applications. The
annotated data have been processed and are part of the MDA
dataset as described in Section IV-D.

We also found that many desktop applications available in
the Microsoft Store, such as Instagram, TikTok, Pinterest, and
Facebook, are deployed as Progressive Web Apps (PWAs).
PWAs are web applications that provide an app-like experience
and can be installed on a device to run in a dedicated
window without the traditional browser interface. Because
PWAs run inside the web browser process, it is impossible
to identify them by their process name. As a result, we focus
exclusively on native Windows applications. Analysis of PWA-
based applications has been reserved for the future.

C. ISCX2016 Dataset

For an objective comparison, we included publicly available
dataset named ISCXVPN20166 created by the Canadian Insti-
tute for Cybersecurity. The dataset contains annotated samples
of network application communications such as web browser,
email, chat, streaming, file transfer, etc, see [16]. The full
dataset contains 21 GB of captured communications, covering
2,436 TLS connections from 16 different applications.

D. MDA Dataset

The Mobile Desktop Applications (MDA) dataset is an
annotated dataset created by our research team for experiments
with encrypted traffic7. The dataset contains complete com-
munications in the form of PCAP files from 35 mobile and
42 desktop applications. Table III shows the number of TLS
connections of MDA mobile and desktop applications com-
pared to the ISCX2016. For both datasets, we preprocessed

5See http://hashapp.netology.sk:8081/
6See https://www.unb.ca/cic/datasets/vpn.html [Sep 2024].
7Available at https://github.com/matousp/tls-fingerprinting [2024].



Mobile MDA Desktop MDA ISCX2016
Total TLS connections 6227 15074 2436
Complete connections 6133 15047 2422
Filtered connections 4142 12285 1494
Train part 3095 8144 1063
Test part 1047 4141 431

Number of apps 35 42 16

TABLE III: Statistics of the MDA and ISCX2016 datasets

and cleaned the data to prepare it for use in the experiments.
First, we filter out incomplete connections and connections to
advertising and tracking servers. Then we divide the whole
dataset into a training and a test part based on the separate
runs of our applications, using 2/3 of the runs for training and
1/3 for testing. Since each run consists of a different number
of TLS connections, the numbers are not exact.

We also computed basic statistics for the MDA dataset. Ta-
ble IV provides selected properties of individual fingerprints,
their combinations, and the SNI value for mobile and desktop
application connections. These properties evaluate different
types of fingerprints, their combinations, and show which
combination is important for correctly identifying applications.
We provide the total number of distinct values, the percentage
of unique fingerprints vs. our application set, the percentage of
applications covered by unique fingerprints, and the efficiency
of the fingerprint.

The efficiency E expresses the average number of appli-
cations that share the same fingerprint. It is computed as
follows: let i = 1 . . . n be the number of unique fingerprints
and the function f(i) maps each fingerprint to an application.
For example, if a fingerprint is assigned to two different
applications, f(i) = 2. Then the efficiency E of the fingerprint
type is calculated as follows:

E =

∑n
i=1 f(i)

n
(1)

For example, we found 8,208 different JA3 fingerprints, of
which 99.5% were unique, i.e., used by only one application.
The rest of the fingerprints were shared by multiple applica-
tions. However, the JA3 fingerprints only cover 67.5% of the
applications, the rest of the applications do not have unique
fingerprints. The efficiency of 1.02 means that, on average,
one fingerprint is used for 1.02 applications. Thus, the optimal
fingerprint has a coverage of 100% and an efficiency of 1.
From this point of view, the combinations of fingerprints or
SNI value are more promising for application identification
and we focused on them in our experiments.

Fingerprint type Total Unique Covered apps Efficiency
JA3 8208 99.5% 67.5% 1.02
JA4 111 54.1% 41.6% 3.36
JA3S 77 44.2% 20.8% 4.53
JA4S 97 48.5% 27.3% 4.06
JA3+JA3S 8330 99.2% 80.5% 1.02
JA4+JA4S 264 66.7% 70.1% 2.16
JA3+JA4+JA3S+JA4S 8349 99.2% 84.4% 1.02
SNI 728 88.0% 89.6% 1.27

TABLE IV: Efficiency of different TLS fingerprints in mobile
and windows application filtered dataset.

Fig. 2: The processing pipeline

E. Evaluation methodology

Assigning a specific application to each TLS connection is a
challenging problem due to the number of shared fingerprints.
On the other hand, for network traffic monitoring, it is helpful
to assign a small set of possible applications to each TLS
connection. To address the issue of shared fingerprints, we
use two different evaluation methods to compare the accuracy
of different classification approaches:

• Probabilistic Method, where a single, most likely appli-
cation is associated with the tested TLS connection.

• Set-based method, where each TLS connection is associ-
ated with a set of applications that match the connection
based on the chosen classification approach. The classifi-
cation result is considered correct if the real application
is included in the set of possible candidates.

The accuracy provides a comparison between different fin-
gerprinting methods. The accuracy for set-based classification
is calculated by evaluating all classifiers on the test data. For
each application, there are three possible results:

• OK: At least one classifier correctly identifies the app.
• Unknown: None of the classifiers recognizes the app.
• Error: One or more classifiers match the app, but none

is correct.
Calculating the accuracy of a probabilistic classification

means that each application classifier generates a probability
score for each row of the test data, indicating how likely it is
that the row belongs to a particular application. The classifier
with the highest probability score is selected as the predicted
classification for that row of data. The result is calculated as
OK if the selected classifier correctly identifies the application.
The Unknown and Error results are calculated as described for
set-based classification. The overall accuracy is then calculated
by aggregating the number of OK, Unknown and Error results
over each dataset.

V. EXPERIMENTS

We have performed experiments with different identification
methods. All experiments follow the same processing steps as
shown in Figure 2. The input is the labelled dataset with TLS
communication, which is filtered in the first step to remove
known connections to public adservers. The filtered dataset is
divided into a training and a test part. The training part is used
to train ML-based detectors and to map fingerprints and SNIs
to applications. After the models are created, they are used in
the evaluation using the test data. During the evaluation, two
modes are considered as described in Section IV-E.



Mobile apps Windows apps All ISCX2016
Classification type OK Unknown Error OK Unknown Error OK Unknown Error OK Unknown Error
Probabilistic classification

JA3+JA3S 47.6% 13.7% 38.8% 30.4% 61.9% 7.7% 32.3% 52.2% 15.6% 79.4% 6.5% 14.4%
JA4+JA4S 54.4% 1.8% 43.7% 56.8% 0.4% 42.7% 54.0% 0.7% 43.4% 80.0% 6.3% 13.7%
JA3+JA3S+JA4+JA4S 49.2% 13.7% 37.2% 30.4% 61.9% 7.7% 32.6% 52.5% 15.2% 79.4% 6.3% 14.4%
ML-based 46.0% 28.6% 25.4% 47.0% 0.8% 52.2% 44.7% 4.3% 51.1% 77.4% 1.1% 21.4%
SNI 86.3% 5.9% 7.8% 75.0% 1.5% 23.5% 76.6% 1.9% 21.5% 85.9% 5.7% 8.4%

Set-based classification

JA3+JA3S 79.9% 13.7% 6.5% 37.4% 61.9% 0.7% 46.0% 52.2% 1.9% 86.5% 6.3% 7.2%
JA4+JA4S 90.9% 1.8% 7.3% 98.7% 0.4% 0.9% 97.1% 0.7% 2.2% 86.5% 6.3% 7.2%
JA3+JA3S+JA4+JA4S 78.8% 13.7% 6.6% 37.4% 61.9% 0.7% 45.9% 52.2% 1.9% 86.5% 6.3% 7.2%
ML-based 67.3% 13.6% 19.1% 97.5% 0.2% 2.3% 91.9% 1.4% 6.7% 87.7% 2.5% 9.8%
SNI 88.3% 5.9% 5.8% 98.2% 1.5% 0.3% 96.2% 1.9% 1.9% 91.3% 5.7% 3.0%

TABLE V: Accuracy of TLS connection classification with different classification approaches.

Fingerprint type mobile desktop all ISCX2016
JA3+JA3S 5.46 2.27 3.85 2.09
JA4+JA4S 5.77 5.03 6.71 2.09
JA3+JA4+JA3S+JA4S 5.29 2.26 3.78 2.09
ML-based 1.79 3.22 3.55 1.57
SNI 1.17 2.12 2.00 1.77

TABLE VI: Average number of predicted applications for one
fingerprint (set-based method).

A. Application Identification Methods

The principles of the considered application identification
methods are described in this section.

1) Fingerprints Classifiers: Our experiments evaluated the
performance of different fingerprint combinations for applica-
tion identification. We compared the combination of the older
version of the fingerprints (JA3+JA3S) with the newer version
(JA4+JA4S). We also tried combining all four fingerprints
together (JA3+JA3S+JA4+JA4S).

We used a dictionary-based exact match method to classify
the fingerprints. We created a dictionary of fingerprints from
the training set and used it to find the most likely application
or set of applications for each connection in the test set. The
fingerprints not seen in the training set were marked Unknown.

The experiments yielded some unexpected results. Although
the basic properties, see table IV, show very high uniqueness
and percentage of covered applications for the JA3+JA3S
combination, its accuracy for connection classification is the
lowest. This is more obvious for the Windows applications,
where the fingerprints tend to be more unique due to the
different order of the TLS client extensions. This high degree
of uniqueness leads to a high percentage of unseen Unknown
fingerprints in the test set. In this situation, JA4 works better
because it uses the client extensions differently.

In general, newer fingerprints (JA4+JA4S) perform better,
but they tend to form a larger cluster of associated applications
(on average 3 more applications than in the case of JA3). We
tested combinations of JA3, JA3S, JA4, and JA4S, but their
performance was comparable to the JA3+JA3S fingerprints.

2) SNI Classifier: For SNI classification, we use the same
dictionary-based and exact match method as for fingerprinting.
Not surprisingly, this classifier achieves the best accuracy for
the majority of our datasets. It is only slightly outperformed

by the set-based classifier, but at the cost of a higher average
number of applications assigned to each connection.

3) ML-Based Classifiers: To facilitate comparison with
fingerprinting methods, we also trained ML-based binary
classifiers for application identification. A separate classifier
was trained for each application, with the primary goal of eval-
uating whether ML algorithms could achieve higher accuracy
in identifying applications. We deliberately did not perform
advanced feature engineering or use flow metadata, relying
only on the information available in the TLS handshakes.
This allowed us to directly compare the accuracy of ML-based
detectors with JA3/JA4 fingerprinting.

The dataset was divided into training and test parts, fol-
lowing a similar methodology used for fingerprinting. The
training data represents 2/3 of the captured TLS handshakes.
Importantly, all applications were present in the training data.
We applied this approach to all datasets.

The input features represented categorical data8, which
required appropriate encoding. We used one-hot encod-
ing, which, while potentially generating a large number of
columns, avoids introducing unintended relationships between
values. The input features are listed in the table VII. String
values were encoded directly using one-hot encoding. Lists of
strings were converted into a single string by concatenating the
individual values in their original order. The combined string
was then one-hot encoded. In the case of extension types these
were first converted to an ordered list, and then concatenated
into a single string using the same encoding process as for
lists. We chose this approach after analysing the dataset and
observing that ordering the information keeps the number of
different values manageable without losing much information.
We also remove grease values from the list before encoding.

Encoding categorical data results in many boolean columns.
The table VIII shows the boolean vector size after encod-
ing categorical columns for each dataset. The total number
represents the size of the input vector for classifier training,
which is obtained by concatenating the individual one-hot
encoded source features. The table also shows the size for each

8Although most of the input fields are numeric representing constant values,
e.g., TLS versions, cipher suites, extension types, etc., we treat them as strings
because they have categorical rather than ordinal meaning.



No Feature Type Description

F1 TlsVersion String The version of the TLS protocol used during the connection.
F2 TlsClientCipherSuites String[] An array of the cipher suites supported by the client.
F3 TlsClientExtensionsSet String[] An ordered array of TLS extensions supported by the client.
F4 TlsClientSupportedGroups String[] An array of supported elliptic curve groups by the client.
F5 TlsClientAlpns String[] An array of Application-Layer Protocol Negotiation (ALPN) protocols supported by the client.
F6 TlsClientSupportedVersions String[] An array of TLS protocol versions supported by the client.
F7 TlsClientSignatureAlgorithms String[] An array of signature algorithms supported by the client for verifying the integrity of the TLS handshake.
F8 TlsServerExtensions String[] An array of TLS extensions used by the server, responding to the client’s supported extensions.
F9 TlsServerCipherSuite String The cipher suite selected by the server for encryption during the TLS handshake.

TABLE VII: Features used for ML-based binary classifiers

source feature after applying one-hot encoding. Due to space
limitations, the header refers to the feature index (defined in
Table VII) instead of the full feature name. As can be seen, the
largest vectors in all datasets are the client and server extension
features, which contain the most diverse values within the
source datasets. The total size of the feature vector varies
slightly between the datasets, reflecting the difference between
the windows and mobile dataset and the older ICSX dataset.
For example, in mobile dataset, we observed only a single
TlsVersion, but a richer variation of extension values.

Dataset Total F1 F2 F3 F4 F5 F6 F7 F8 F9

Windows 136 3 17 33 10 3 3 17 42 8
Mobile 142 1 23 46 10 8 5 10 30 9
ICSX 123 3 20 25 4 6 1 7 37 20

TABLE VIII: Dataset feature dimensions

We also computed the correlation between the coded fea-
tures. The graph in Fig. 3 shows the distribution of Pear-
son correlation coefficients between pairs of features in the
data sets. The histogram shows a distribution of correlation
coefficients between -1 and 1, with the majority of values
centered around 0, indicating that most pairs of features are
uncorrelated. The small positive correlation is likely due to
the nature of one-hot coding, as some categories may rarely
co-occur, resulting in very low positive correlations between
pairs of features that are activated together in some cases. The
histogram also shows a tail towards correlation coefficients
close to 1, meaning that some pairs of features are highly
correlated. We further examined these correlations and found
that some specific client cipher suites are always used together
with certain extension sets (TlsClientExtensionsSet), signa-
ture algorithms (TlsClientSignatureAlgorithms), and support
groups (TlsClientSupportedGroups).

We investigated two methods of dimensionality reduction
to improve classifier training. Specifically, we compared the
performance of binary classifiers trained on the original one-
hot-encoded feature vectors to those trained after applying
dimensionality reduction techniques. The first method we
tested was Principal Component Analysis (PCA), which is the
orthogonal projection of the data onto a lower dimensional
linear space such that the variance of the projected data is
maximised. The second method was autoencoder-based di-
mensionality reduction, where a neural network (autoencoder)
is trained to compress the data into a lower dimensional space.

(a) MDA Dataset (b) ICSX Dataset

Fig. 3: Correlation among features

The results showed that neither of these dimensionality reduc-
tion methods led to significant improvements in classification
performance metrics. In addition, they also did not reduce the
computation time. Contrary, the autoencoder-based approach
required a significant amount of time to train the encoder,
which increased the overall computational cost.

We evaluated the classifiers using several performance met-
rics, including recall, F1 score, AUC-ROC, and AUC-PRC
[17]. These metrics were computed independently for each
application classifier. We used several algorithms, i.e., Random
Forest, FastTree, LightGBM, LBFGS Logistic Regression, and
Linear Support Vector Machine, to develop the application
classifiers. For each classifier, we selected the algorithm with
the highest recall (for the set-based identification task) and
F1 score (for the probabilistic identification task). Since we
build the binary classifier for each application in the dataset,
the input data is necessarily unbalanced. For each application,
there are significantly fewer positive class elements (con-
nections of the application) because the connections of all
other applications form a negative class. Therefore, a random
oversampling technique was applied to mitigate this problem.
This method duplicates instances of the minority class in the
categorical dataset to increase its representation9. The graphs
in Fig. 4 illustrate the impact of dataset imbalance on key
performance metrics of the trained classifiers. As shown, both
Recall and F1-score improve when the dataset is balanced.
This is because a balanced dataset allows the classifier to
more effectively learn and identify the minority class, which is

9While more sophisticated methods such as SMOTENC could be consid-
ered, even this simple approach sufficiently improved the false negative rate.



(a) MDA Dataset (b) ICSX Dataset

Fig. 4: The metrics of unbalanced datasets

underrepresented in unbalanced datasets. As expected Accu-
racy decreases slightly when the dataset is balanced. In an
unbalanced dataset, Accuracy is often inflated because the
classifier can simply correctly predict the majority class most
of the time, even though it may fail to identify instances from
the minority class. In contrast, a balanced dataset forces the
classifier to better consider both classes, resulting in a more
realistic measure of its true performance.

The resulting best performing model was designated as the
application detector, which was then further evaluated and
compared using the methodology described in section IV-E. As
a result, the application detectors can use different algorithms
depending on their performance. Among the algorithms tested,
decision tree binary classification model was chosen in most
cases (177), with a few classifiers using either field-aware
factorisation to binary classification model (4 cases) or a linear
logistic regression model trained with L-BFGS method (5
cases).

B. Results Evaluation

The goal of our experiments was to compare different
approaches to identifying the application based on TLS fea-
tures. Table V-A summarises the achieved accuracy for two
modes: (a) a single application identification, which suggests
the most likely application identified for the TLS connection,
and (b) a set of application identifications, which provides
a list of candidate applications. Obviously, the first mode is
more difficult and results in lower accuracy. We evaluated
five different methods, three based on TLS fingerprinting,
one using an ML-trained model, and the last using a simple
dictionary of known SNIs.

While the experiments were limited to our MDA dataset
and the ISCX dataset, there are some interesting observations:

• The SNI approach provides consistent performance across
the different datasets, supporting the observation that
applications tend to use only a limited set of SNIs
to communicate with their application servers. In some
cases, the SNI is not available, or the applications contact
the share services, making such connections ambiguous.

• In fingerprinting, the different combinations of JA3 and
JA4 fingerprints give different levels of accuracy. The
best solution is the combination of JA4 and JA4S, which

proves the correct design of the hash calculation and sup-
ports the claim of the JA4+ authors about the usefulness
of this fingerprinting method for identifying encrypted
communications. The performance of the widely used
JA3 fingerprint is poor, suggesting that it is becoming
obsolete. This is because the TLS libraries use GREASE
values and random order in the TLS parameters.

• Finally, we tried to build ML-based classifiers to identify
applications. However, using only TLS attributes resulted
in classifiers with inferior performance. When we anal-
ysed the results, we found that the source data contained
many overlapping samples (see Section III-B), which
negatively affected the metrics of the trained classifiers.

Although the amount of data available for the experiments
was limited, it is apparent from the results that the traditional
fingerprinting approach can achieve reasonable performance
in the task of identifying the candidate application for the
TLS connection. This is obvious because the method is
based on exact matching of known fingerprints. Due to the
characteristics of the input data, the ML-based approach does
not help in the case of previously unseen samples, and due
to the overlapping samples, it is even worse overall than the
JA4+JA4S fingerprinting.

C. Discussion

While achieving high accuracy in identifying individual
applications through encrypted traffic analysis is challenging,
identifying a collection of candidate applications is easier, but
beneficial for network monitoring. In real-world scenarios,
additional heuristics, such as IP address-based Internet ser-
vice identification, can complement and refine the detection
process, improving overall accuracy. This approach allows
network administrators to narrow down potential applications
and services, which is especially useful in large environments.

In practice, all of the proposed methods require regular
updates to the fingerprint database or retraining of the models.
This ongoing maintenance task is non-trivial and requires
significant resources, especially as applications are frequently
updated and evolve. Ensuring that the fingerprinting method
remains accurate and up-to-date is critical to maintaining its
effectiveness in identifying encrypted traffic.

All the evaluated methods rely on the TLS connection
information, which can be achieved in flow-based monitor-
ing environments through approaches such as IPFIX, where
network probes analyze and extract information from TLS
handshakes. Once this information is captured, any of the pre-
sented identification methods can be effectively applied. While
the machine learning approach may be more computationally
intensive during training, the performance of all the methods
discussed is efficient enough to allow real-time application in
operational environments. This makes them suitable for use
in live network monitoring systems where timely detection of
application traffic is critical for security monitoring.



VI. CONCLUSION AND FUTURE WORK

Identification of network applications is one of the desired
features of network monitoring tools. We have tested methods
based on fingerprinting techniques such as JA3/JA4, SNI-to-
application mapping, and ML-based classification. Our exper-
iments showed that accurate identification of individual appli-
cations is challenging. However, for administrators, identifying
a set of possible applications provides valuable insight.

Among the fingerprinting methods, the combination of
client-side and server-side parameters proved effective in dis-
tinguishing between a range of applications, with the JA4
and JA4S methods achieving accuracy rates above 90%. In
contrast, the older JA3/JA3S fingerprinting methods showed
lower performance, mainly due to limitations in the way
their hashes are computed, rendering them inapplicable. The
accuracy of ML-based detectors varies with the input data set.

Further feature engineering and the use of larger datasets
are needed to improve performance. Nevertheless, ML-based
classifiers offer the advantage of reducing the number of
unknown results, which is an inherent advantage of their
underlying principles compared to traditional fingerprinting
techniques. For comparison, we also evaluated the SNI-based
method, which takes advantage of the fact that applications
often use unique SNI values to identify their servers. As
expected, the SNI method gave the best results for single
application identification tasks.

Our evaluation was limited to two available datasets, which
limits our ability to assess the stability and robustness of the
methods under different conditions. Future research should test
the methods on a wider range of datasets, including those
with different network environments and application types,
to provide a more comprehensive evaluation. The datasets
used for windows and mobile applications were automatically
generated and labelled, which limits the representation of the
full range of application behaviors.

Future work should include the development of more so-
phisticated methods for labeling connections in real-world
scenarios that capture a wider range of application activities
and interactions. This would result in richer data sets that more
accurately reflect actual patterns. The ML-based classification
approach used a simple methodology that leaves significant
room for improvement, particularly through the use of ad-
vanced feature engineering techniques to better capture the
nuances in the TLS characteristics of applications. In addi-
tion, alternative techniques to improve classification accuracy
should be explored to address the issue of class imbalance.

Finally, while the methods have shown promise in controlled
environments, their performance in real-world settings has yet
to be thoroughly evaluated, for example by deploying these
methods in live environments to test their effectiveness under
real-world conditions.

ACKNOWLEDGMENT

This work is supported by the project “Flow-based
Encrypted Traffic Analysis (FETA)”, 2022-2025, no.
VJ02010024, funded by the Ministry of the Interior of

the Czech Republic, and the internal BUT project ”Smart
Information Technology for a Resilient Society”, 2023-2025,
no. FIT-S-23-8209. The authors would like to thank to Kristián
Kičinka, who participated in the creation of fingerprints.

REFERENCES

[1] Petr Velan, Milan Čermák, Pavel Čeleda, and Martin Drašar. A Survey
of Methods for Encrypted Traffic Classification and Analysis. Netw.,
25(5):355–374, September 2015.

[2] Blake Anderson, Subharthi Paul, and David McGrew. Deciphering
malware’s use of TLS (without decryption). Journal of Computer
Virology and Hacking Techniques, 2018.

[3] Michael J. de Lucia and Chase Cotton. Detection of encrypted malicious
network traffic using machine learning. In MILCOM 2019 - 2019 IEEE
Military Communications Conference (MILCOM), pages 1–6, 2019.

[4] Onur Barut, Rebecca Zhu, Yan Luo, and Tong Zhang. Tls encrypted
application classification using machine learning with flow feature
engineering. In Proceedings of the 2020 10th International Conference
on Communication and Network Security, ICCNS ’20, page 32–41, New
York, NY, USA, 2021. Association for Computing Machinery.

[5] Blake Anderson and David McGrew. TLS Beyond the Browser:
Combining End Host and Network Data to Understand Application
Behavior. In Proceedings of the Internet Measurement Conference, pages
379–392, 2019.

[6] Blake Anderson and David A. McGrew. Accurate TLS fingerprinting
using destination context and knowledge bases. CoRR, abs/2009.01939,
2020.

[7] Petr Matoušek, Ivana Burgetová, Ondřej Ryšavý, and Malombe Victor.
On Reliability of JA3 Hashes for Fingerprinting Mobile Applications.
In Digital Forensics and Cyber Crime, ICDF2C 2020, volume 351 of
LNICST, pages 1–22. Springer, 2021.

[8] Mohammad Lotfollahi, Ramin Shirali Hossein Zade, Mahdi Jafari
Siavoshani, and Mohammdsadegh Saberian. Deep packet: A novel
approach for encrypted traffic classification using deep learning, 2018.

[9] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen
Yang. End-to-end encrypted traffic classification with one-dimensional
convolution neural networks. In 2017 IEEE International Conference
on Intelligence and Security Informatics (ISI), pages 43–48, 2017.

[10] Haipeng Yao, Chong Liu, Peiying Zhang, Sheng Wu, Chunxiao Jiang,
and Shui Yu. Identification of encrypted traffic through attention
mechanism based long short term memory. IEEE Transactions on Big
Data, 8(1):241–252, 2022.

[11] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. IETF RFC 5246, August 2008.

[12] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
IETF RFC 8446, August 2018.

[13] D. Benjamin. Applying Generate Random Extensions And Sustain
Extensibility (GREASE) to TLS Extensibility. IETF RFC 8701, Jan 2020.

[14] D. Eastlake. Transport Layer Security (TLS) Extensions: Extension
Definitions . IETF RFC 6066, January 2011.

[15] S. Friedl, A. Popov, A. Langley, and E. Stephan. Transport Layer
Security (TLS) Application-Layer Protocol Negotiation Extension. IETF
RFC 7301, July 2014.

[16] Gerard Draper-Gil., Arash Habibi Lashkari., Mohammad Saiful Islam
Mamun., and Ali A. Ghorbani. Characterization of Encrypted and
VPN Traffic using Time-related Features. In Proceedings of the 2nd
International Conference on Information Systems Security and Privacy
- ICISSP, pages 407–414. INSTICC, SciTePress, 2016.

[17] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts
and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 3rd edition, 2011.


