
Submitted to:
NCMA 2023

© A. Meduna, T. Kožár
This work is licensed under the
Creative Commons Attribution License.

Final sentential forms

Alexander Meduna
Faculty of Information Technology

Brno University of Technology
Czech Republic

meduna@fit.vutbr.cz

Tomáš Kožár
Faculty of Information Technology

Brno University of Technology
Czech Republic

xkozar02@stud.fit.vutbr.cz

Let G be a context-free grammar, and let F be a final language over an alphabet W . A final sentential
form is any sentential form of G that belongs to F . The strings resulting from the elimination of all
nonterminals from W in a final sentential forms are in the language of G finalized by F if and only if
they contains only terminals.

The language of any context-free grammar finalized by a regular language is context-free. On
other hand, it is demonstrated that L is a recursively enumerable language if and only if there exists
a propagating context-free grammar G such that L equals the language of G finalized by {w#wR |w ∈
{0,1}∗}, where wR is the reversal of w.

1 Introduction

The present paper introduces and studies final sentential forms of context-free grammars. These forms
represent the sentential forms in which the sequences of prescribed symbols, possibly including non-
terminals, belong to given final languages. If all the other symbols are terminals, these final forms are
changed to the sentences of the generated languages by simply eliminating all nonterminals in them.
Next, we sketch both a practical inspiration and a theoretical reason for introducing this new way of
context-free language generation.

I. Indisputably, parsing represents a crucially important application area of ordinary context-free
grammars (see Chapters 3 through 5 in [4]) as well as their modified versions, such as regulated
grammars (see Section 20.3 in [6]). During the parsing process, the correctness of the source
program syntax is often verified before all nonterminals are eliminated; nevertheless, most clas-
sically constructed parsers go on eliminating these nonterminals by using erasing rules until only
terminals are derived. As a result, the entire parsing process is slowed down uselessly during this
closing phase (for a simple, but straightforward illustration of this computational situation, see, for
instance, Case Study 14/35 in [4] or Example 4.35 in [1]. Clearly, as the newly introduced way of
language generation frees us from a necessity of this closing elimination of all nonterminals, the
parsers that make use of it work faster.

II. From a theoretical viewpoint, in the present paper, we achieve a new representation for recur-
sively enumerable languages based upon context-free languages. Admittedly, the theory of formal
languages is overflown with many representations for recursively enumerable languages based
upon operations over some context-free languages or their spacial cases (see Section 4.1.3 in [7]).
Nonetheless, we believe this new representation is of some interest when compared with the previ-
ously demonstrated representations. Indeed, each of the already existing representations is demon-
strated, in essence, by a proof that has the following general format. (i) First, given any recursively
enumerable language L, it represents L by a suitable language model G, such as a phrase struc-
ture grammar in a normal form. (ii) Then, from G, it derives both operations and context-free

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Final Sentential Forms

languages involved in the representation in question. (iii) Finally, it shows that the representation
made in this way from G holds true. What is important from our standpoint is that in a proof like
this, the specific form of all the operations as well as the languages involved in the representation
always depend on G, which generates L. As opposed to this, the new representation achieved in
the present paper is much less dependent on L or any of its language models . More precisely, we
demonstrate the existence of a unique constant language C defined as C = {w#wR |w ∈ {0,1}∗}
and express any recursively enumerable language L by using C and a minimal linear language
without any operation. Consequently, C always remains unchanged and, therefore, independent of
L or its models. Considering this independency as well as the absence of any operations in the new
representation, we believe this representation might be of some interest to formal language theory.

To give a more detailed insight into this study, we first informally recall the notion of an ordinary
context-free grammar and its language (this paper assumes a familiarity with formal language theory). A
context-free grammar G is based upon a grammatical alphabet V of symbols and a finite set of rules. V is
divided into two disjoint subalphabets—the alphabet of terminals T and the alphabet of nonterminals N.
Each rule has the form A → x, where A is a nonterminal and x is a string over V . Starting from a special
start nonterminal, G repeatedly rewrites strings according to its rules, and in this way, it generated its
sentential forms. Sentential forms that consists only of terminal symbols are called sentences, and the
set of all sentences represents the language generated by G.

In this paper, we shorted the generating process sketched above by introducing a final language F
over a subalphabet W ⊆ V . A final sentential form of G is any of the sentential forms in which the se-
quence of symbols from W belong to F . If in this form, all the symbols from V −W are terminals, the
string resulting from eliminating all nonterminals from N ∩W results into a sentence of the generated
language L(G,F) finalized by F .

Next, we illustrate the newly introduced concept of final sentential forms by a simple example in linguis-
tic morphology, which studies word formation, such as inflection and compounding, in natural languages.

Example 1. Consider an alphabet Σ of consonants and vowels. Suppose that a morphological study
deals with a language L consisting of all possible words over Σ together with their consonant-vowel
binary schemes in which every consonant and every vowel are represented by 1 and 0, respectively.
Mathematically, L = {w#σ(w) |w ∈ Σ+}, where σ is the homomorphism from Σ∗ to {0,1}∗ defined as
σ(x) = 1 and σ(y) = 0 for every consonant x in Σ and every vowel y in Σ, respectively. For instance,
considering Σ as the English alphabet, the#110 ∈ L while the#100 ̸∈ L. Define the context-free grammar
G with following rules.

• S → A#B,B → 0Y B,B → 0Y,B → 1XB,B → 1X ,

• A → aAY,A → aY for all vowels a in Σ,

• A → bAX ,A → bX for all consonants b in Σ,

where the uppercases are nonterminals with S being the start nonterminal, and the other symbols are ter-
minals. Set W = {X ,Y,#} and F = {w#wR |w ∈ {X ,Y}∗}. For instance, take this step-by-step derivation

S ⇒ A#B ⇒ tAX#B ⇒ thAXX#B ⇒ theY XX#B

⇒ theY XX#1XB ⇒ theY XX#1X1XB ⇒ theY XX#1X1X0Y

A. Meduna, T. Kožár 3

In theY XX#1X1X0Y,Y XX#XXY ∈ F , and apart from X ,Y,# ∈W , theY XX#1X1X0Y contains only ter-
minals. The removal of all Xs and Y s in theY XX#1X1X0Y results into the#110, which thus belongs to
L(G,F). Clearly, L(G,F) = L.

As its main result, the present paper demonstrated that L is a recursively enumerable language if
and only if L = L(G,{w#wR |w ∈ {0,1}∗}), where G is a context-free grammar; observe that in this
equivalence, the final language {w#wR |w ∈ {0,1}∗} remains constant independently of L. On the other
hand, the paper also proves that any L(G,F) is context-free if G is a context-free grammar and F is
regular.

The rest of the paper is organized as follows. First, Section 2 gives all the necessary terminology
and defines the new notions, informally sketched in this introduction. Then, Section 3 establishes the
above-mentioned results and points out an open problem related to the present study.

2 Preliminaries and Definitions

This paper assumes that the reader is familiar with the language theory (see [5]).
For a set, Q, card(Q) denotes the cardinality of Q. For an alphabet, V , V ∗ represents the free monoid

generated by V under the operation of concatenation. The unit of V ∗ is denoted by ε . Set V+ = V ∗ - {ε};
algebraically, V+ is thus the free semigroup generated by V under the operation of concatenation. For
w∈V ∗, |w| and wR denotes the length of w and the reversal of w, respectively. For every i∈ {0,1, ..., |w|},
su f f ix(w, i) denotes the suffix of w of length i; analogously, pre f ix(w, i) denotes the prefix of w of
length i. Let W be an alphabet and ω be a homomorphism from V ∗ to W ∗ (see [5] for the definition of
homomorphism); ω is a weak identity if ω(a) ∈ {a,ε} for all a ∈V .

A context-free grammar (CFG for short) is quadruple G = (V,T,P,S), where V is an alphabet, T ⊆V ,
P ⊆ (V −T)×V ∗ is finite, and S ∈ V −T . Set N = V −T . V,T,N,P, and S are referred to as the total
alphabet, the terminal alphabet, the nonterminal alphabet, the set of rules, and the start symbol of G,
respectively. Instead of (A,x) ∈ P, we write A → x ∈ P throughout. For brevity, we often denote A → x
by a unique label p as p : A → x, and we briefly use p instead of A → x under this denotation. For every
p : A → x ∈ P, the left-hand side of p is defined as lhs(p) = X . G is propagating if A → x ∈ P implies
x ∈V+. G is linear if no more than one nonterminal appears on the right-hand side of any production in
P. Furthermore, a linear grammar G is minimal (see page 76 in [8]) if N = {S} and S → # ∈ P,# ∈ T , is
the only production with no nonterminal on the right side, whereas it is assumed that # does not occur
in any other production. In this paper, a minimal linear grammar G is called a palindromial grammar if
card(P)≥ 2, and every rule of the form S → xSy, where x,y ∈ T ∗, satisfies x = y,x,y ∈ T . For instance,
H = ({S,0,1,#},{0,1,#},{S → 0S0,S → 1S1,S → #},S) is a palindromial grammar.

For every u,v ∈ V ∗ and p : A → x ∈ P, write uAv ⇒ uxv [p] or, simply, uAv ⇒ uxv; ⇒ is called the
direct derivation relation over V ∗. For n ≥ 0,⇒n denotes the n-th power of ⇒. Furthermore, ⇒+ and
⇒∗ denote the transitive closure and the transitive-reflexive closure of ⇒, respectively. Let φ(G) = {w ∈
V ∗ |S ⇒∗ w} denotes the set of all sentential forms of G. The language of G is denoted by L(G) and
defined as L(G) = T ∗∩ φ(G). For example, L(H) = {w#wR |w ∈ {0,1}∗}, where H is defined as above.

Let G= (V,T,P,S) be a CFG and W ⊆V . Define the weak identity W ω from V ∗ to W ∗ as W ω(X) = X
for all X ∈W , and W ω(X) = ε for all X ∈V −W . Let F ⊆W ∗. Set

φ(G,F) = {x |x ∈ φ(G), W ω(x) ∈ F}
L(G,F) = {T ω(y) |y ∈ φ(G,F), (N−W)ω(y) = ε}.

4 Final Sentential Forms

φ(G,F) and L(G,F) are referred to as the set of sentential forms of G finalized by F and the language of G
finalized by F respectively. Members of φ(G,F) are called final sentential forms. REG,PAL,LIN,CF
and RE denote the families of regular, palindromial, linear, context-free, and recursively enumerable
languages, respectively. Observe that

REG∩PAL = /0 and REG∪PAL ⊂ LIN.

Set

CFPAL = {L(G,F) |G is a CFG ,F ∈ PAL}
CFREG = {L(G,F) |G is a CFG ,F ∈ REG}

Example 2. Set I = {i(x) |x ∈ {0,1}+}, where i(x) denotes the integer represented by x in the standard
way; for instance, i(011) = 3. Consider

L = {u#v |u,v ∈ {0,1}+, i(u)> i(v) and |u|= |v|}.

Next, we define a CFG G and F ∈ PAL such that L = L(G,F). Let G = (V,T,P,S) be a context-free
grammar. Set V = {S,X ,X ,Y,Y ,A,B,C,D,0,1,#},T = {0,1,#}, and add following rules to P

• S → X#X

• X → 1AX ,X → 0BX ,X → 1CY,X → 1C

• X → 1XA,X → 0XB,X → 0YC,X → 0C

• Y → αDY,Y → αD,Y → αY D,Y → αD for all α ∈ {0,1}.

Set W = {A,B,C,D,#} and F = {w#wR |w ∈ {A,B,C,D}+ and n ≥ 1}. Observe that F = L(H), where
H = ({S,A,B,C,D,#},{A,B,C,D,#},{S → ASA,S → BSB,S → CSC,S → DSD,S → #},S) is a palin-
dromial grammar. Therefore, F ∈ PAL. For instance, take this step-by-step derivation

S ⇒ X#X ⇒ 1AX#X ⇒ 1A0BX#X ⇒ 1A0B1CY #X ⇒ 1A0B1C0D#X

⇒ 1A0B1C0D#1XA ⇒ 1A0B1C0D#10XBA ⇒ 1A0B1C0D#100XCBA

⇒ 1A0B1C0D#1001Y DCBA ⇒ 1A0B1C0D#1001DCBA

in G. Notice that W ω(1A0B1C0D#1001DCBA) ∈ F, and T ω(1A0B1C0D#1001DCBA) ∈ L(G,F).As
obvious, L = L(G,F).

A queue grammar (see [2]) is a sextuple, Q = (V,T,U,D,s,P), where V and U are alphabets sat-
isfying V ∩ U = s, T ⊆ V , D ⊆ U , s ∈ (V −T)(U −D), and P ⊆ (V × (U −D))× (V ∗×U) is a finite
relation such that for for every a ∈ V , there exists an element (a,b,z,c) ∈ P. If u,v ∈ V ∗U such that
u = arb;v = rzc;a ∈ V ;r,z ∈ V ∗;b,c ∈ U ; and (a,b,z,c) ∈ P, then u ⇒ v [(a,b,z,c)] in G or, simply,
u ⇒ v. In the standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗.
The language of Q, L(Q), is defined as L(Q) = {w ∈ T ∗ |s ⇒∗ w f where f ∈ D}. A left-extended queue
grammar is a sextuple, Q= (V,T,U,D,s,P), where V,T,U,D, and s have the same meaning as in a queue
grammar. P ⊆ (V × (U −D))× (V ∗×U) is a finite relation (as opposed to an ordinary queue grammar,
this definition does not require that for every a ∈V , there exists an element (a,b,z,c) ∈ P). Furthermore,
assume that # /∈ V ∪U . If u,v ∈ V ∗{#}V ∗U so that u = w#arb;v = wa#rzc;a ∈ V ;r,z,w ∈ V ∗;b,c ∈ U ;

A. Meduna, T. Kožár 5

and (a,b,z,c) ∈ P, then u ⇒ v[(a,b,z,c)] in G or, simply u ⇒ v. In the standard manner, extend ⇒
to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗. The language of Q, L(Q), is defined
as L(Q) = {v ∈ T ∗ |#s ⇒∗ w#v f for some w ∈ V ∗ and f ∈ D}. Less formally, during every step of a
derivation, a left-extended queue grammar shifts the rewritten symbol over #; in this way, it records the
derivation history, which plays a crucial role in the proof of Lemma 5 in the next section.

A deterministic finite automaton (DFA for short) is quintuple M = (Q,Σ,R,s,F), where Q is a finite
set of states, Σ is an alphabet of input symbols, Q∩Σ = /0,s ∈ Q is a special state called the start state,
and F ⊆ Q is a set of final states in M. R is a total function from Q×Σ to Q. Instead of R(q,a) = p, we
write qa → p, where q, p ∈ Q and a ∈ Σ∪{ε};R is referred to as the set of rules in M. For any x ∈ Σ∗ and
qa → p ∈ R, we write qax ⇒ px. The language of M,L(M), is defined as L(M) = {w |w ∈ Σ∗,sw ⇒∗

f , f ∈ F}, where ⇒∗ denotes the reflexive-transitive closure of ⇒. Recall that DFAs characterize REG
(see page 29 in [5]).

3 Results

In this section, we show that every language generated by a context-free grammar finalized by a regular
language is context-free (see Theorem 2). On the other hand, we prove that every recursively enumerable
language can be generated by a propagating context-free grammar finalized by a unique palindromial
language of this form—{w#wR |w ∈ {0,1}∗} (see Theorem 9).

Lemma 1. Let G = (V,T,P,S) be any CFG and F ∈ REG. Then, L(G,F) ∈ CF.

Proof. Let G = (V,T,P,S) be any CFG and F ∈ REG. Let F = L(M), where M = (Q,W,R,qs,QF) is a
deterministic finite automaton.

Construction. Introduce U = {⟨paq⟩ | p,q ∈ Q,a ∈ V}∪ {⟨qsSQF⟩}. From G and M, construct a new
CFG H such that L(H) = L(G,F) in the following way. Set

H = (V ,T,P,⟨qsSQF⟩)

The components of H are constructed as follows. Set V =V ∪U . Construct P as follows:

(0) Add ⟨qsSQF⟩ → ⟨qsSq f ⟩ for all q f ∈ QF .

(1) Let A → y0X1y1X2...Xnyn ∈ P, where A ∈ V −T,yi ∈ (V −W)∗ and X j ∈ V,0 ≤ i ≤ n,1 ≤ j ≤ n,
for some n ≥ 1;
then, add ⟨q1Aqn+1⟩ → y0⟨q1X1q2⟩y1⟨q2X2q3⟩...⟨qnXnqn+1⟩yn to P, for all q1,q2, ...,qn+1 ∈ Q.

(2) Let A → α ∈ P, where A ∈V − (T ∪W),α ∈ (V −W)∗;
then, add A → α to P.

(3) Let ⟨paq⟩ ∈U , where a ∈W ∩T, pa → q ∈ R;
then, add ⟨paq⟩ → a to P.

(4) Let ⟨pBq⟩ ∈U , where pB → q ∈ R,B ∈W ∩ (V −T);
then, add ⟨pBq⟩ → ε to P.

To prove L(G,F) = L(H), we first prove L(H)⊆ L(G,F); then, we establish L(G,F)⊆ L(H). To demon-
strate L(H)⊆ L(G,F), we first make three observations—(i) through (iii)—concerning every derivation
of the form ⟨qsSq f ⟩ ⇒∗ y with y ∈ T ∗.

6 Final Sentential Forms

(i) By using rules constructed in (1) and (2), H makes a derivation of the form

⟨qsSq f ⟩ ⇒∗ x0⟨q1Z1q2⟩x1...⟨qnZnqn+1⟩xn

where xi ∈ (T −W)∗,0≤ i≤ n,⟨q jZ jq j+1⟩ ∈U,Z j ∈W,1≤ j ≤ n,q1 = qs,qn+1 = q f ,q1...qn+1 ∈Q,q f ∈
QF .

(ii) If

⟨qsSq f ⟩ ⇒∗ x0⟨q1Z1q2⟩x1...⟨qnZnqn+1⟩xn

in H, then

S ⇒∗ x0Z1x1...Znxn

in G, where all the symbols have the same meaning as in (i).

(iii) Let H make

x0⟨q1Z1q2⟩x1...⟨qnZnqn+1⟩xn ⇒∗ y

by using rules constructed in (3) and (4), where y ∈ T ∗, and all the other symbols have the same mean-
ing as in (i). Then, for all 1 ≤ j ≤ n,q jZ j → q j+1 ∈ R,y = x0U1x1...Unxn, where U j = T ω(Z j). As
q jZ j → q j+1 ∈ R,1 ≤ j ≤ n,q1 = qs and qn+1 = q f ,q f ∈ QF , we have Z1...Zn ∈ L(M).

Based on (i) through (iii), we are now ready to prove L(H)⊆ L(G,F). Let y ∈ L(H). Thus ⟨qsSQF⟩ ⇒∗

y,y ∈ T ∗ in H. As H is an ordinary CFG, we can always rearrange the applications of rules during
⟨qsSQF⟩ ⇒∗ y in such a way that

⟨qsSQF⟩ ⇒ ⟨qsSq f ⟩ (α)
⇒∗ x0⟨q1Z1q2⟩x1...⟨qmZmqm+1⟩xm (β)
⇒∗ y (γ)

so that during (α), only a rule from (0) is used, during β only rules from (1) and (2) are used, and
during (γ) only rules from (3) and (4) are used. Recall that Z1Z2...Zn ∈ F (see (iii)). Consequently,

W ω(x0Z1x1...Znxn) ∈ F . From (3), (4), (ii), and (iii), it follows that

S ⇒∗ x0Z1x1...xn−1Znxn in G

Thus, as L(M) = F , we have y ∈ L(G,F), so L(H)⊆ L(G,F).

To prove L(G,F)⊆ L(H), take any y ∈ L(G,F). Thus,

S ⇒∗ x0Z1x1...xn−1Znxn in G, and

y = T ω(x0Z1x1...xn−1Znxn) with Z1...Zn ∈ F,

A. Meduna, T. Kožár 7

where xi ∈ (T −W)∗,0 ≤ i ≤ n,Z j ∈W,1 ≤ j ≤ n. As Z1...Zn ∈ F , we have q1Z1 → q2, ...,qnZn → qn+1 ∈
R,q1...qn+1 ∈ Q,q1 = qs,qn+1 = q f ,q f ∈ QF . Consequently, from (0) through (4) of the Construction,
we see that

⟨qsSQ f ⟩ ⇒ ⟨qsSq f ⟩
⇒∗ x0Z1x1...Znxn

⇒∗ x0U1x1...Unxn

where U j = T ω(Z j),1 ≤ j ≤ n. Hence, y ∈ L(H), so L(G,F)⊆ L(H).
Thus, L(G,F) = L(H).

Theorem 2. CFREG = CF.

Proof. Clearly, CF ⊆ CFREG. From Lemma 1, CFREG ⊆ CF. Thus, Theorem 2 holds true.

Now, we prove that by using constant palindromial language C = {w#wR |w ∈ {0,1}∗} to finalize
propagating context-free grammar, we can represent any recursively enumerable language.

Lemma 3. Let L ∈ RE. Then, there exists a left-extended queue grammar Q satisfying L(Q) = L.

Proof. See Lemma 1 in [3].

Lemma 4. Let H be a left-extended queue grammar. Then, there exists a left-extended queue grammar,
Q = (V,T,U,D,s,R), such that L(H) = L(Q) and every (a,b,x,c) ∈ R satisfies a ∈V −T,b ∈U −D,x ∈
((V −T)∗∪T ∗) and c ∈U .

Proof. See Lemma 2 in [3].

Lemma 5. Let Q = (V,T,U,D,s,R) be a left-extended queue grammar. Then, L(Q) = L(G,{w#wR |w ∈
{0,1}∗}), where G is a CFG.

Proof. Without any loss of generality, assume that Q satisfies the properties described in Lemma 4 and
that {0,1}∩ (V ∪U) = /0. For some positive integer, n, define an injection, ι , from Ψ∗ to ({0,1}n −1n),
where Ψ = {ab |(a,b,x,c) ∈ R,a ∈V −T,b ∈U −D,x ∈ (V −T)∗∪T ∗,c ∈U} so that ι is an injective
homomorphism when its domain is extended to Ψ∗; after this extension, ι thus represents an injective
homomorphism from Ψ∗ to ({0,1}n−1n)∗(a proof that such an injection necessarily exists is simple and
left to the reader). Based on ι , define the substitution, ν from V to ({0,1}n −1n) as ν(a) = {ι(aq) |q ∈
U} for every a ∈ V . Extend domain of ν to V ∗. Furthermore, define the substitution, µ , from U to
({0,1}n − 1n) as µ(q) = {ι(aq)R |a ∈ V} for every q ∈ U . Extend the domain of µ to U∗. Set J =
{⟨p, i⟩ | p ∈U −D and i ∈ {1,2}}.

Construction. Next, we introduce a context-free grammar G so that L(Q) = L(G,{w#wR |w ∈ {0,1}∗}).
Let G = (V ,T,P,S), where V = J ∪ {0,1,#} ∪ T . Construct P in the following way. Initially, set P = /0;
then, perform the following steps 1 through 5.

1. if (a,q,y, p) ∈ R, where a ∈V −T, p,q ∈U −D,y ∈ (V −T)∗ and aq = s,
then add S → u⟨p,1⟩v to P, for all u ∈ ν(y) and v ∈ µ(p);

2. if (a,q,y, p) ∈ R, where a ∈V −T, p,q ∈U −D and y ∈ (V −T)∗,
then add ⟨q,1⟩ → u⟨p,1⟩v to P, for all u ∈ ν(y) and v ∈ µ(p);

3. for every q ∈U −D, add ⟨q,1⟩ → ⟨q,2⟩ to P;

4. if (a,q,y, p) ∈ R, where a ∈V −T, p,q ∈U −D,y ∈ T ∗,
then add ⟨q,2⟩ → y⟨p,2⟩v to P, for all v ∈ µ(p);

8 Final Sentential Forms

5. if (a,q,y, p) ∈ R, where a ∈V −T,q ∈U −D,y ∈ T ∗, and p ∈ D,
then add ⟨q,2⟩ → y# to P.

Set W = {0,1,#} and Ω = {xy#z ∈ φ(G) |x ∈ {0,1}+,y ∈ T ∗,z = xR}.

Claim 6. Every h ∈ Ω is generated by G in this way

S
⇒ g1⟨q1,1⟩t1 ⇒ g2⟨q2,1⟩t2 ⇒ ...⇒ gk⟨qk,1⟩tk ⇒ gk⟨qk,2⟩tk
⇒ gky1⟨qk+1,2⟩tk+1 ⇒ gky1y2⟨qk+2,2⟩tk+2 ⇒ ...⇒ gky1y2...ym−1⟨qk+m−1,2⟩tk+m−1
⇒ gky1y2...ym−1ym#tk+m

in G, where k,m ≥ 1;q1, ...,qk+m−1 ∈ U − D;y1, ...,ym ∈ T ∗; ti ∈ µ(qi...q1) for i = 1, ...,k + m;g j ∈
ν(d1...d j) with d1, ...,d j ∈ (V −T)∗ for j = 1, ...,k;d1...dk = a1...ak+m with a1, ...,ak+m ∈V −T (that is,
gk ∈ ν(a1...ak+m) with gk = (tk+m)

R);h = y1y2...ym−1ym.

Proof. Examine the construction of P. Observe that every derivation begins with an application of a pro-
duction having S on its left-hand side. Set 1-J = {⟨p,1⟩ | p ∈ U},2-J = {⟨p,2⟩ | p ∈ U},1-P = {p | p ∈
P and lhs(p) ∈ 1-J},2-P = {p | p ∈ P and lhs(p) ∈ 2-J}. Observe that in every successful derivation of
h, all applications of productions from 1-P precede the applications of productions from 2-P. Thus, the
generation of h can be expressed as

S
⇒ g1⟨q1,1⟩t1 ⇒ g2⟨q2,1⟩t2 ⇒ ...⇒ gk⟨qk,1⟩tk ⇒ gk⟨qk,2⟩tk
⇒ gky1⟨qk+1,2⟩tk+1 ⇒ gky1y2⟨qk+2,2⟩tk+2 ⇒ ...⇒ gky1y2...ym−1⟨qk+m−1,2⟩tk+m−1
⇒ gky1y2...ym−1ym#tk+m

where all the involved symbols have the meaning stated in Claim 6.

Claim 7. Every h ∈ L(Q) is generated by Q in this way

#a0q0
⇒ a0#x0q1 [(a0,q0,z0,q1)]
⇒ a0a1#x1q2 [(a1,q1,z1,q2)]
...
⇒ a0a1...ak#xkqk+1 [(ak,qk,zk,qk+1)]
⇒ a0a1...akak+1#xk+1qk+2 [(ak+1,qk+1,y1,qk+2)]
...
⇒ a0a1...akak+1...ak+m−1#xk+m−1y1...ym−1qk+m [(ak+m−1,qk+m−1,ym−1,qk+m)]
⇒ a0a1...akak+1...ak+m#y1...ymqk+m+1 [(ak+m,qk+m,ym,qk+m+1)]

where k,m ≥ 1, ai ∈ V − T for i = 0, ...,k +m, x j ∈ (V − T)∗ for j = 1, ...,k +m, s = a0q0, a jx j =
x j−1z j for j = 1, ...,k, a1...akxk+1 = z0...zk, ak+1...ak+m = xk, q0,q1, ...,qk+m ∈ U −D and qk+m+1 ∈ D,
z1, ...,zk ∈ (V −T)∗, y1, ...ym ∈ T ∗, h = y1y2...ym−1ym.

Proof. Recall that Q satisfies the properties given in Lemma 4. These properties implies that Claim 7
holds true.

Claim 8. L(G,{w#wR |w ∈ {0,1}∗}) = L(Q).

Proof. To prove that L(G,F)⊆ L(Q), take any h ∈ Ω generated in the way described in Claim 6. From

W ω(h)∈ {w#wR |w∈ {0,1}∗}, it follows that xy#z with z= xR where x = gk,y= y1...ym,z= tk+m. At this

A. Meduna, T. Kožár 9

point R contains (a0,q0,z0,q1), ...,(ak,qk,zk,qk+1), (ak+1,qk+1,y1,qk+2), ..., (ak+m−1,qk+m−1,ym−1,qk+m),
(ak+m,qk+m,ym,qk+m+1), where z1, ..., zk ∈ (V −T)∗, and y1, ..., ym ∈ T ∗. Then, Q makes the generation
of T ω(h) in the way described in Claim 7. Thus T ω(h) ∈ L(Q).

To prove L(Q)⊆ L(G,{w#wR |w∈ {0,1}∗}), take any h∈ L(Q). Recall that h is generated in the way
described in Claim 7. Consider the rules used in this generation. Furthermore, consider the definition of
ν and µ . Based on this consideration, observe that from the construction of P, it follows that S ⇒∗ oh#o
in G for some o,o ∈ {0,1}+ with o = oR. Thus, W ω(oh#o) ∈ {w#wR |w ∈ {0,1}∗}, so consequently,
h ∈ L(G,{w#wR |w ∈ {0,1}∗}).

Claims 6 through 8 imply that Lemma 5 holds true.

Theorem 9. A language L ∈ RE if and only if L = L(G,{w#wR |w ∈ {0,1}∗}), where G is a propagating
CFG.

Proof. This theorem follows from Lemmas 3 through 5.

Corollary 10. RE = CFPAL.

Consider {w#wR |w ∈ {0,1}∗} without #—that is {wwR |w ∈ {0,1}∗}. On the one hand, this language is
out of CFPAL because the central symbol # does not occur in it. On the other hand, it is worth pointing
out that Theorem 9 can be based upon this purely binary language as well.

Corollary 11. A language L ∈ RE if and only if L = L(G,{wwR |w ∈ {0,1}∗}), where G is propagating.

Proof. Prove this corollary by analogy with the way Theorem 9 is demonstrated.

Before closing this paper, we point out an open problem. As its main results, the paper has demonstrated
that every recursively enumerable language can be generated by a propagating context-free grammar
G finalized by {w#wR |w ∈ {0,1}∗} (see Theorem 9). Can this results be established with G having a
limited number of nonterminals and/or productions?

References
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi & Jeffrey D. Ullman (2006): Compilers: Principles, Techniques,

and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., USA.
[2] H. C. M. Kleijn & G. Rozenberg (1983): On the Generative Power of Regular Pattern Grammars. Acta

Informatica 20, pp. 391–411.
[3] Alexander Meduna (2000): Generative Power of Three-Nonterminal Scattered Context Grammars. Theoretical

Computer Science 2000(246), pp. 279–284.
[4] Alexander Meduna (2008): Elements of Compiler Design. Taylor and Francis, Taylor & Francis Informa plc.
[5] Alexander Meduna (2014): Formal Languages and Computation. Taylor and Francis, Taylor & Francis In-

forma plc, doi:10.1201/b16376.
[6] Alexander Meduna & Petr Zemek (2014): Regulated Grammars and Automata. Springer US.
[7] G. Rozenberg & A. Salomaa, editors (1997): Handbook of Formal Languages, Vol. 1: Word, Language,

Grammar. Springer, New York.
[8] Arto Salomaa (1973): Formal Languages. ACM monograph series, Academic Press.

https://doi.org/10.1201/b16376

	Introduction
	Preliminaries and Definitions
	Results

