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Abstract—This paper extends the previously published pa-
rameter estimation-based approach to interturn short circuit
diagnostics in permanent magnet synchronous motors by real-
time monitoring of hidden machine states after fault occur-
rence. The designed monitoring method relies on an adaptive
formulation of the Kalman filter, which assumes interdependence
between measurement and process noise variables. A variable
forgetting factor not only mitigates the impact of the process
model uncertainty but also facilitates the simultaneous operation
of the monitoring algorithm and fault indicator estimation.
Furthermore, contributions of fault current and healthy machine
model to stationary reference frame currents are estimated from
an advanced discrete-time motor description reflecting a stator
winding arrangement inside a motor’s case. The monitoring
algorithm is validated in steady state, torque load transient,
and velocity transient laboratory experiments with diverse fault
severity values.

Index Terms—discrete-time systems, fault currents, fault diag-
nosis, Kalman filters, permanent magnet machines, short-circuit
currents, state estimation.

I. INTRODUCTION

Currently, Permanent Magnet Synchronous Motors
(PMSMs) are extensively used across diverse industrial and
automotive applications where higher safety and availability
requirements apply. Due to these requirements, modern
electrical drives featuring PMSMs must ensure continuous
operability at their standard or reduced capabilities even
after fault occurrence. In this context, the risk of Interturn
Short Circuits (ISCs), typically caused by thermal degradation
between the coil turns in a stator winding of PMSMs, becomes
a critical concern, as these faults can compromise both the
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safety and availability requirements. The combination of low
short circuit resistance and higher voltage, increased by the
flux linkage of permanent magnets, produces a significant
fault current. The heat generated by the high-value fault
current then further degenerates the insulation material, and
this self-heating circle might eventually lead to a motor’s
breakdown and potential fire [1]. Thus, rapid and reliable
fault diagnostics and mitigation are required to prevent the
described scenario. The modern fault mitigation algorithms
[2] - [5] utilizing, for example, model predictive control
strategies commonly require extended information about
a shorted motor to function. The necessary characteristics
include not only fault occurrence indication but also
estimations of electrical parameters, fault severity, fault
location, and hidden machine states that are not directly
measured (e.g., current flowing through the short circuit).

The previous research [6] addressed ISCs detection, local-
ization, and severity estimation based on the model compar-
ison [7] and parameter estimation [8] algorithms cast in a
decision-making framework. Through the Bayesian approach
and specially designed discrete-time model [9] - [10], fault
diagnostics functioned even in the velocity and torque load
transient state. Furthermore, as the noise precision was learned
with the estimated parameters, the designed algorithm proved
robust to the system noise. This paper aims to extend the
previously designed diagnostics by online monitoring of the
hidden motor states, considering not only the fault current but
also the contributions of a healthy motor model to the overall
currents. For this purpose, Kalman filtering with the variable
forgetting factor [11] was adopted.

Kalman filtering has previously shown effectiveness in fault
detection [12] - [13], indicator estimation [14] - [15], and fault
current monitoring [16]. As [16] discusses a topic related to
this paper, we carefully examined the presented fault current
monitoring method and identified the subsequent drawbacks:

1) The algorithm is built upon the simplified winding model,
which assumes the whole stator winding is concentrated
in one coil segment. As most PMSMs contain series,
parallel, or series-parallel connected coil segments, the
utilized model neglects actual inductive couplings and
provides overrated fault current estimations [9].

2) The discrete-time equivalent of the specified model is



obtained using the forward Euler discretization method.
As proved in [10], this method provides numerically
unstable results considering a motor operating at higher
velocities.

3) The estimation error of the extended Kalman filter uti-
lized in [16] highly depends on the initialization of
covariance matrices, which are adjusted using trial and
error experiments. Considering drawbacks 1) and 2), the
covariance of the process noise is most likely velocity-
dependent, and provided adjustment might not be valid
for additional operating points.

In this paper, we address all the problems mentioned above
as the utilized model reflects the winding arrangement in
a motor’s case, the semi-analytical discrete-time equivalent
is derived using the exact solution for linear time-varying
systems, and the conventional Kalman filter is replaced by
an adaptive variant designed to mitigate the process model
uncertainty. Alternative approaches to fault current estimation
are based, for example, on the second harmonic monitoring in
reference voltages and feedback currents [17], proportional-
integral estimator [18], moving horizon observer [19], or
utilization of model predictive control technique [20]. Nev-
ertheless, a drawback of these techniques is their limited
functionality in the transient states.

The paper is organized as follows: Section II describes the
utilized discrete-time model, Section III is dedicated to an
overview of the adaptive Kalman filter [11] and incorporation
of the designed hidden state monitoring to fault diagnostics
[6], and Section IV demonstrates the laboratory experiment
results.

II. DISCRETE-TIME MODEL

The utilized discrete-time model is calculated from the
continuous-time description, which was derived in [9] as in
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where iα, iβ and uα, uβ are the stationary reference frame
currents and voltages; variables ωe and θe denote electrical
angular velocity and angle; and the electrical parameters Rs,
Ls, and λpm stand for the stator resistance, inductance, and
permanent magnet flux linkage, respectively. Parameters np

and ns are then related to the distribution of the stator winding
inside a motor’s case, where np represents the number of
parallel-connected winding branches, and ns is the number
of coils in series in each branch as depicted in Fig. 1.
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Fig. 1. The phase a winding under an interturn short circuit fault.

Parameters np and ns can be obtained by examining the
winding of a utilized PMSM. The fault-related characteristics
if , xf , Rf , and ϕ then denote the fault current flowing through
ISC, fault severity quantifying the proportion of shorted turns
to total turns within one coil segment, short circuit resistance,
and fault location in terms of the angle of shorted phase
(ϕ = {0, 2π/3,−2π/3} means that ISC is in phase {a, b, c}),
respectively. Furthermore, as seen in (1), the resulting α − β
currents are composed of the weighted fault current if and
contributions iα,h and iβ,h generated by the model of a healthy
motor (the first equation in (1)). These variables pose hidden
states to be estimated using the Kalman filtering.

According to [6], parameters xf and Rf cannot be separated
from each other in the estimation procedure. Thus, fault
severity is estimated as a converted value assuming zero short
circuit resistance xf (Rf = 0Ω). This conversion complicates
fault current monitoring because it disables the distinction
between a higher-value fault current flowing through a few
shorted turns and a lower fault current flowing through more
shorted turns, as they both have a comparable impact on the
overall α−β currents (see the last equation in (1)). Therefore,
we have decided to merge these fault-related characteristics
into one hidden state to be tracked. We have
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In formulating the discrete-time model, it is crucial to
make satisfactory approximations of the input voltages uα,
uβ and variables ωe and θe to prevent solving a system
of nonlinear differential equations. As the α − β inputs are
linearly transformed from the stator voltages (abc) produced
by inverter switching, width-modulated pulses are present
even in the stator reference frame. Despite this, with adjusted
current sampling effectively suppressing ripple, the modulation
can be neglected, and the α−β voltages between the sampling
intervals are expressed as follows:

uα(t) = uα(k − 1) (k − 1)Ts ≤ t < kTs

uβ(t) = uβ(k − 1) (k − 1)Ts ≤ t < kTs (3)

where k is the current step of the discrete-time system, Ts

represents the sampling period, and t denotes the time. Since



only minor velocity changes occur in the sampling interval
[10], ωe can be approximated by a constant value ωe(t) ≈ ω̄e

as in

ω̄e =
ωe(k) + ωe(k − 1)

2
(k − 1)Ts ≤ t < kTs. (4)

Approximation (4) then leads to the linear angle between the
sampling intervals. We have

θe(t) ≈ θe(k − 1) +
(
t− (k − 1)Ts

)
ω̄e. (5)

Expression (5) is again valid only at (k − 1)Ts ≤ t < kTs.
By using the approximations of electrical angular velocity

and angle (4) and (5), system (1) can be discretized as a
general linear time-invariant description [10], where the parts
containing sin
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)
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)
(the first equation in (1))

are attributed to the vector of inputs. The resulting discrete-
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where w(k) ∈ R3 and e(k) ∈ R2 denote the process and
measurement noises, constituting mutually dependent, zero-
mean, normally distributed white noise sequences. The inter-
dependence among the noises was defined in [11] as follows:
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In (7), upper index T refers to the transposition, expression
ε{x} [f(x)] describes the expectation of a function f(x) over
x, and covariance matrices Q3×3, S3×2, and R2×2 are assumed
known. Matrices A, B, and C are then derived as in
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As the diagnostic algorithm presented in [6] provides updated
parameters in matrices A, B, and C in each step, the matrices

are considered time-varying, indicated by the lower index k:
Ak, Bk, and Ck. Inputs vα(k, k−1) and vβ(k, k−1) in (6) were
previously calculated in [6] by integrating the exponentially
damped sine and cosine functions between steps (k − 1)Ts

and kTs, as follows:
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III. MONITORING THE HIDDEN STATES

Kalman filtering algorithm presented in [11] was adopted
to the specialized discrete-time model described above. The
utilized algorithm’s version recognizes three steps:

1) Data-updating steps:
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2) Forgetting factor adjustment:
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3) Time-updating steps:

x̂k+1|k = Akx̂k|k + Bku(k) + SR−1êk|k

Pk+1|k =
(

FPk|kFT + Q − SR−1ST
)
λ−1
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In (10) - (12), I3×3 stands for the identity matrix, and the lower
indexes x|y refer to the inner steps of the utilized Kalman
filter, where x represents the time-updating step, and y denotes
the data-updating step. The characteristics propagated between
the Kalman filter steps are estimates of the hidden states x̂,
covariance matrix P, and forgetting factor λ.

In our implementation, the measurement noise covariance
matrix was set to R = 2 · 10−5I2×2, where 2 · 10−5 was
obtained by computing the variance of α − β currents at
the setpoint of 0. The process noise covariance matrix was



Acquire inputs: iα, iβ , uα, uβ , sin(θe), cos(θe), and ω̄e.
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Fig. 2. One step in the extended fault diagnostic procedure.

adjusted as Q = diag(1 · 10−4, 1 · 10−4, 5 · 10−3), where
diag(x1, x2, ..., xn) ∈ Rn×n represents the diagonal matrix.
The implemented adaptive Kalman filter compensates for un-
derrated process noise variance by real-time forgetting factor
adjustments. Therefore, starting with lower values in Q and
gradually increasing the variance to prevent the long-term
forgetting factor fluctuations in a steady state helps to track
the actual process noise. Since monitoring the fault current
projection runs simultaneously with fault indicators estimation
(and utilizes unsettled parameters), the process noise variance
of ĩf is higher than that of iα,h and iβ,h. The dependencies
between the process and measurement noise components are
then modeled using the covariance matrix S as follows:

S =

[
2 · 10−5 0 2 · 10−5

0 2 · 10−5 2 · 10−5

]T
. (13)

Even though, as yielded from (8), no direct dependency
between iβ and ĩf is assumed if short circuits occur in phase
a, we preserved the dependency between noise components
to cover potential unmodeled nonlinearities. The covariances
between measurement and process noises are then at the level
of lower measurement noise variance.

Fig. 2 illustrates the integration of the developed approach
for hidden state monitoring into the existing fault diagnostics
framework presented in [6]. As shown in Fig. 2, the fault
diagnostics cover two branches switched by the binary variable
ISC, which indicates the detected presence of an interturn
short circuit fault. Before a short circuit detection, the di-
agnostic algorithm learns the electrical parameters respecting
the actual operating point and detects fault based on the
rapid changes in the estimated parameters attributable to fault
presence. After the fault is detected, the identified electrical
parameters are utilized as constants, and fault location and
severity are tracked. The estimator of hidden states then

Algorithm 1 Estimating the hidden states
1: Initialization:
2: Initialize the propagated covariance matrix P = I3×3,

hidden states x̂ =
[
0 0 0

]T
, and forgetting factor

λ = 1. Set up initial delay τ in steps (utilized value:
τ = 5) and matrices R, Q, and S.

3: Hidden state estimation:
4: while ISC(k − τ) do
5: Update matrices Ak, Bk, and Ck as in (8) based

on the current fault-related parameter estimates (elec-
trical parameters are utilized as constants). Calculate
vα(k, k − 1) and vβ(k, k − 1) as in (9) and form the
input and output vectors u and y as in (6). Load the
propagated characteristics P, x̂, and λ from memory.

6: Execute the data-updating steps (10), forgetting factor
adjustment (11), and time-updating steps (12) in order.
Store the updated characteristics P, x̂, and λ in memory.

7: end while.

Power 
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Dynamometer

Power Source

Data
acquisition

 tools

Experimental 
configurable

 motor

Fault insertion
 unit

Fig. 3. The fault diagnostics testing setup.

relies on recursively updated fault-related parameters; thus, its
performance is highly dependent on the settlement of these
fault indicators. Therefore, it is recommended to delay the
start of the state monitoring algorithm slightly to prevent the
occurrence of undefined results. The hidden state monitoring
algorithm reads Algorithm 1.

IV. VALIDATING THE HIDDEN STATE MONITORING

The monitoring was tested by using a vector-controlled
200 W machine (estimated Rs = 0.515Ω, Ls = 1.58 mH,
and λpm = 9.88 mWb). The windings of the utilized motor
contain three coil segments in series (np = 1 and ns = 3),
each comprising 25 turns. The diagnostic algorithm (Fig. 2),
triggered after calculating control action updates, is executed
with a 10 kHz sampling frequency at an AURIX Application
kit TC277, which controls an NXP three-phase low voltage
power stage. In the three-core microcontroller TC277, the
first core is dedicated to the control algorithm, the second
integrates the diagnostic algorithm, and the third facilitates
communication. The testing setup is depicted in Fig. 3.
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Fig. 4. Outcomes of hidden state monitoring experiments: measured α− β currents, estimated fault severity and hidden states, and variable forgetting factor.

As shown in Fig. 3, ISCs are emulated by the fault in-
sertion unit, which contains an anti-series arrangement of
two PSMNR90-50SLH MOSFET power transistors and an
ACS709 current sensor for fault current measurement.

The validation included diverse fault severity values (2/25,
4/25, and 6/25) emulated in phase a and three distinct experi-
ment types: Steady state without a load, Load transient with a 5
Nm/s rate change, and Velocity transient without a load. The
outcomes of validation experiments are presented in Fig. 4.
In the first scenario, the experimental motor was driven to

the angular velocity setpoint of 1200 rad/s without additional
load exerted by a dynamometer, and ISCs were emulated after
reaching the setpoint. In the second type of experiment, the
machine, driven to the same velocity setpoint, was loaded by
0.25 Nm, and after settling the velocity, faults were connected
in the load transient (rise to 0.75 Nm with a 5 Nm/s rate).
In the last experimental case, no additional load was exerted,
and ISCs were emulated in the velocity transient from 800 to
1200 rad/s close to 1100 rad/s.

In Fig. 4, faults occurring at the time tf are detected at



TABLE I
THE COMPUTATIONAL TIME OF THE IMPLEMENTED ALGORITHMS

Measured
Time

Data
preproc.

El. params.
estimation

Fault
detection

Fault. ind.
estimation

Hid. state
monitoring

Min [µs] 1.0 28.6 51.0 53.2 12.4
Average [µs] 1.2 29.8 52.7 54.8 12.9

Max [µs] 1.5 30.4 54.5 60.1 13.4

td, indicated by the vertical lines in the graphs displaying
measured α − β currents. The accuracy of hidden state
monitoring is then highly dependent on the estimated fault
severity xf (Rf = 0Ω) settlement. However, the forgetting
factor λ adjustments help to suppress the uncertain information
caused by varying fault-related parameters, and the hidden
state estimates quickly converge to the actual values. As also
seen in Fig. 4, iα,h and iβ,h, reconstructed by the Kalman filter,
track even the growing pattern caused by the load change,
and estimated ĩf,est nearly corresponds to the measured values
ĩf,meas. The differences are most likely caused by assuming
rounded values of fault severity 2/25, 4/25, and 6/25 in the
calculation of ĩf,meas. These values do not reflect different
coil lengths and fault terminal attachment shifts, which can be
up to ±0.5 turns.

The computational requirements of the designed hidden
state monitoring algorithm implemented at the AURIX Ap-
plication kit TC277 were measured and compared with the
execution times of other fault diagnostics parts (Fig. 2)
presented in [6]. Table I compares the computational times
of individual fault diagnostic algorithm parts. Regarding the
information in Table I, the hidden state monitoring algorithm is
the most efficient part of fault diagnostics (data preprocessing
excluded). Overall diagnostic algorithm then uses one TC277
microcontroller core at 83 - 88 % before an ISC is detected,
and the load decreases at 68 - 77 % after fault detection.

V. CONCLUSION

In this paper, the existing modular fault diagnostic algorithm
was extended by hidden state monitoring. The solution relies
on the adaptive Kalman filter and specialized discrete-time
model. The monitoring algorithm utilizes parameters and fault
indicators estimated for the actual operating point and func-
tions even in the transient states. Furthermore, the diagnostics,
including the monitoring method, are computationally efficient
as they use only one core of the AURIX microcontroller at a
maximum of 88 %. A comparison with the existing diagnostic
algorithm was introduced in [6]. The extensions designed in
this manuscript preserve all the advantages, which are further
enhanced by hidden state monitoring, but also the disadvantage
because the algorithm functions only if Ld ≈ Lq .
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