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Abstract 17 

The level of waste management varies significantly from one EU state to another and therefore 18 

they have different starting position regarding reaching defined EU targets. The forecast of 19 

waste production and treatment is essential information for the expected future EU targets 20 

fulfilment. If waste treatment does not meet the targets under the current conditions, it is 21 

necessary to change waste management strategies. This contribution presents a universal 22 

approach for forecasting waste production and treatment using optimisation models. The 23 

approach is based on the trend analysis with the subsequent data reconciliation (quadratic 24 

programming). The presented methodology also provides recommendations to include the 25 

quality of trend estimate and significance of territory in form of weights in objective function. 26 

The developed approach also allows to put into context different methods of waste handling 27 

and production. The variability of forecast is described by prediction and confidence intervals. 28 

Within the EU forecast, the expected demographic development is taken into account. The 29 

results show that most states will not meet EU targets with current trend of waste management 30 

in time. Presented methodology is developed at a general level and it is a suitable basis for 31 

strategic planning at the national and transnational level. 32 

Keywords 33 

Waste forecasting, Circular Economy Package, quadratic programming, trend modelling, data 34 

reconciliation, confidence intervals 35 
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Nomenclature 1 

Sets  

𝑗, 𝑗 ̅ ∈ 𝐽 All territories, i.e. individual states and the EU as a whole 

ℎ, ℎ̅ ∈ 𝐻 Waste handling /production, incineration, recycling, landfilling, treatment/ 

𝑡 ∈ 𝑇 Time period of historical data and forecast 

𝛽 ∈ 𝐵 Bootstrap resampling 

Mathematical symbols 

𝑎, 𝑏, 𝑐 Regression coefficients for trend estimate 

𝐴𝑗,�̅� Membership matrix for territory hierarchy   

�̃�𝑖𝑖 Diagonal element of regression matrix 

𝑙𝑡,𝑗,ℎ Binary parameter taking into account results from data pre-processing 

𝑚𝑡,𝑗,ℎ Forecasted result of waste production or handling after data reconciliation 

�̃�𝑡,𝛽
𝑗,ℎ

 Forecasted result of bootstrap generated data 𝛽  

𝑛 Number of points in time series used for trend estimate 

𝑝𝑡,𝑗,ℎ Trend value for territorial unit 𝑗 and waste handling ℎ 

𝑞 Number of parameters in regression used for trend estimates 

�̃� Order of predicting year 

𝑡n−𝑞(1 − 𝛼/2) 
(1 − 𝛼/2)-quantile of Student's t-distribution with 𝑛 − 𝑞 degree of 

freedom 

𝑇𝑗,ℎ Total number of available points in time series after data pre-processing 

𝑈ℎ,ℎ̅ Membership matrix for waste production and handling hierarchy   

𝑣𝑗,ℎ Weight characterising the size of the producent  

𝑤𝑗,ℎ Weight characterising the quality of data fitting  

𝑥𝑖,𝑗,ℎ Historical data point in time series  

�̃�𝑡,𝛽
𝑗,ℎ

 Generated data for confidence interval bootstrap construction 

𝜖𝑡
𝑗,ℎ

 Data residuals from evaluated trend 

𝜖𝑡,𝛽
𝑗,ℎ

 Selected residual from the set of data residuals in bootstrap 

𝜖�̃�
𝑗,ℎ

 Scaled data residuals from evaluated trend 

𝜎𝑡
2 Variance estimate of prognosis based on bootstrap repetition 

�̃�2 Variance estimate of residual component 

𝜀𝑡,𝑗,ℎ Error included into trend to maintain links in the system  

𝜀𝑡,𝑗,ℎ
+  Positive part of error 

𝜀𝑡,𝑗,ℎ
−  Negative part of error 

𝛿𝑡,𝑗,ℎ Multiplier of trend in data reconciliation 

Abbreviations  

  

BE Belgium 

CEP Circular economy package 

CZ Czechia 

DK Denmark 

ES Spain 

EU European Union 

FI Finland 

IT Italy 

LR Linear regression 

LT Lithuania 
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LV Latvia 

MSW Municipal solid waste 

RO Romania 

SE Sweden 

TSA Time-series analysis 

WM Waste management 

1 Introduction 1 

Waste management (WM) in the EU is currently undergoing a transition from a linear economy 2 

to a circular economy (Morseletto 2020). The WM modification is motivated by the need to 3 

treat large amounts of waste and save the environment. Appropriate waste treatment could also 4 

replace and save some limited primary resources (Gai et al. 2021). The smooth and sustainable 5 

transition to the circular economy and the transformation of WM is enshrined in legislation by 6 

Circular economy package (CEP), essential for municipal solid waste (MSW) are directives: 7 

Directive (EU) 2018/850, Directive (EU) 2018/851, Directive (EU) 2018/852. The goal of CEP 8 

is to maintain the value of the product as long as possible based on Waste management 9 

Hierarchy, Directive 2008/98/EC. The key years for CEP are the years 2025, 2030 and 2035. 10 

The major milestones contained in CEP are recycling targets and landfilling target, see Fig. 1.  11 

  12 

 13 
Fig. 1. Targets of Circular Economy Package 14 

 15 

The EU's goals are set at state level, but each EU country has a different starting position for 16 

meeting the CEP targets. Significant differences are observed in terms of MSW generation and 17 

ways of treatment. The level of waste generation is coupled with economic development 18 

(Wilson et al. 2015). As a key information can be considered the waste composition, which 19 

shapes future WM development (Šramková et al. 2021). The Fig. 2 illustrates the time evolution 20 

of EU MSW treatment in the period 1995–2018. The construction of the ternary graph is based 21 

on principle presented by Pomberger et al. (2017) and shows the ways of MSW treatment in 22 

percentage. An obvious trend of reduction of landfilling and increase in material recovery can 23 

be seen. A slight increase in incineration of waste can be observed. The incineration, in other 24 

words energy recovery, of waste in Waste-to-Energy plants represents efficient method, how to 25 

deal with non-recyclable components, and thus constitutes an important countermeasure against 26 

global warming (Maki et al. 2021). The area where the goals in 2035 are met (the last monitored 27 

year in CEP) is marked in green. The right part of the Fig. 2 shows the percentage change in 28 

waste production related to the initial year 1995.The historical development of WM at the state 29 

level and also at the EU level as a whole the initial information for estimating future 30 
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development in this article. It can be stated that there are considerable differences between 1 

individual states. Most states already show a gradual development to reduce landfilling and 2 

increase material recovery, thus approaching the CEP target. The question is whether this 3 

gradual development will reach the required goal in time, i.e., in 2035. This information will be 4 

provided by the forecast of the expected development of waste treatment on the basis of the 5 

current trend. A complete visualisation of historical data with a follow-up forecast at the state 6 

level is available in Section 5 and Appendix B. 7 

 8 

 9 
Fig. 2. Waste production and processing in the EU, data 1995–2018 (Eurostat 2020) 10 

 11 

This contribution presents a methodology for forecasting waste production and treatment at the 12 

state level in EU. Input information is historical data on WM. The methodology uses trend 13 

analysis of historical data with subsequent data reconciliation to maintain the link between 14 

waste production and treatment. At the same time, the expected demographic development of 15 

individual states is considered. Demography is a factor that is well predictable and at the same 16 

time has a significant impact on the absolute amount of produced waste (Smejkalová et al. 17 

2020b). The knowledge of expected future MSW production and treatment is valuable 18 

information for WM planning. In addition, the forecasting of baseline scenario identifies 19 

countries, which need the systematic change to achieve the defined targets. 20 

2 Literature review 21 

Waste production and treatment forecasting is an essential input for planning in WM. The waste 22 

treatment models  rarely appear, see Table 1. The waste production models can be distinguished 23 

into prediction models and forecasting models. Prediction models deal with description of 24 

current or future waste production using factors influencing it. In this way, it is possible to 25 

estimate the waste production for example in the locality without available data according to 26 

influencing factors. Simultaneously it is possible to model expected development in future. In 27 
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contrast, forecasting models focus on estimates for the future waste production using only 1 

historical data without external intervation. The difference between prediction and forecasting 2 

models is if the estimation is modelled using links in the system (prediction) or using historical 3 

development (forecasting). There is currently no comprehensive review for forecasting models. 4 

Quality review for prediction models was provided by Beigl et al. (2008). A subsequent article 5 

(Lebersorger and Beigl 2011) by the same authors follows up on the mentioned shortcomings 6 

in the review by creating a regression model, which desribes links between WM and socio-7 

economic factors. These links can be valuable for forecasts in a field of WM.  As another way 8 

for forecasting is time series analysis (TSA) and its combination with other methods. An 9 

interesting example, how to obtain value in unmeasured point, can be the use of surrounding 10 

values (Lanzi et al. 2009). Further in Table 1 is a summary of articles that have dealt with the 11 

forecasts in the EU during recent years.  12 

 13 

Table 1:  Literature review – MSW forecasting for EU member states 14 

State Source 
Treatment 

(yes/no) 

Territory 

level 

Data 

detail 

Number 

of 

historical 

data 

Forecast 

length 

Confidence 

intervals 
Method 

EU 
Andersen et 

al. (2007) 
no  state year - 15 no 

General 

regression 

BE 
Peeters et al. 

(2017) 
no region year 18 25 scenarios 

distribution 

delay 

forecasting 

CZ 

Pavlas et al. 

(2017) 
no micro-region year 6 6 no 

TSA – trend 

analysis, data 

reconciliation* 

Pavlas et al. 

(2020) 
no micro-region year 6 10 no 

TSA – trend 

analysis, data 

reconciliation* 

Hřebíček et 

al. (2017) 
no state year 6 6 yes LR 

Smejkalová 

et al. (2020a) 
no micro-region year 9 14 no 

TSA – trend 

analysis, 

credibility 

model 

DK 
Andersen and 

Larsen (2012) 
yes state year 15 12 no LR 

FI 
Sokka et al. 

(2007) 
no state year 43 18 scenarios IPAT equation 

IT 
Bramati 

(2016) 
no region year 10 13 scenarios 

SEM = 

Simultaneous 

equations 

model 

LV 

Klavenieks 

and 

Blumberga 

(2016) 

no state year 10 7 

scenarios 

LR 

LT 

Denafas et al. 

(2014) 
no municipality month 24 12 

yes 
TSA 

Karpušenkait

ė et al. (2018) 
no state year 10 7,14 

no 
TSA 

Rimaitytė et 

al. (2012) 
no municipality week 416 10 

no 
LR, TSA 

RO 
Ghinea et al. 

(2016) 
no municipality year 16 15 no TSA 
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State Source 
Treatment 

(yes/no) 

Territory 

level 

Data 

detail 

Number 

of 

historical 

data 

Forecast 

length 

Confidence 

intervals 
Method 

ES 

Estay-

Ossandon and 

Mena-Nieto 

(2018) 

yes region year 16 16 scenarios SD 

Oribe-Garcia 

et al. (2015) 
no municipality year 15 13 no 

CA, LR, factor 

models 

SE 

Sjöström and 

Östblom 

(2010) 

no state year 13 24 no 

computable 

general 

equilibrium 

analysis 

 1 

Remark: * methods involving optimisation 2 

 3 

The waste forecasts listed in the Table 1 deal with production of MSW as a whole and also its 4 

fractions (paper, plastic, glass, etc.). However, only Andersen and Larsen (2012) and Estay-5 

Ossandon and Mena-Nieto (2018) also provided a forecast of waste treatment, see column 6 

“Treatment”. Lack of forecasts of waste treatment methods are considered a significant 7 

shortcoming and research gap. Territorial level ranges from the municipal to the state level, so 8 

data are in various details. Only at the level of municipalities the data are available in greater 9 

detail than on the annual basis (month, week). Forecasts are usually targeted at a long prediction 10 

horizon compared to the number of historical data used.  11 

 12 

In most cases, the forecast is modeled using statistical approaches which vary through 13 

contributions, but LR and TSA are applied repeatedly. Therefore, these two are classical 14 

approaches. LR describes the links between waste production and influential factors from 15 

various fields (economics, sociology, demography and others). TSA has different forecasting 16 

approach, it uses historical data to describe development over time, which is then extrapolated 17 

to the future. Optimization methods are marked * in Table 1, these are just two papers. Both of 18 

them use data reconciliation to ensure links in the hierarchical structure of territorial units 19 

(Pavlas et al. 2017) and links between waste fractions (Pavlas et al. 2020). Forecasts for states 20 

outside Europe include the use of optimisation only exceptionally. Usually the optimisation is 21 

used for estimated suitable parameters in the model, as was the case study of e- waste 22 

forecasting production in Australia (Islam and Huda 2019). A study presented by (Dai et al. 23 

2020) described the links between influencing factors and waste production in China. These 24 

links involving nonlinear dependencies were estimated using SVM, coefficients for the model 25 

were found by minimizing risk function using a genetic algorithm. The regression risk and the 26 

loss function were minimized by solving the quadratic optimization problem in the study for 27 

USA presented by (Song et al. 2014). Simulated annealing was used by (Song et al. 2014) for 28 

combine three models. 29 

 30 

Estimate of variability or expected deviations from forecasted data  are an important additional 31 

information about all predictions. It can be expressed by confidence intervals. As literature 32 

review shows, the variability evaluation and modelling is usually omitted. Some publications 33 

tried to desribe potential future development using many scenarios. Only two papers presented 34 

construction of confidence intervals, but they aproach only waste production. To maintain links 35 

between production and treatment, advanced statistical and optimisation methods are needed. 36 

 37 
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Many publications have shown that there is a link between waste production and some factors, 1 

such as population size, income, education etc. The methods for searching links between waste 2 

production (treatment) and economic or demoghraphic data presume sufficient quality of 3 

explanatory parameters, which is not usually available. It represents significant limitations for 4 

these approaches for prediction of WM, especially for long-term prediction. Quality forecasts 5 

of influential factors are therefore needed. In addition, most contributions are presented for only 6 

one EU state. As an exception, Andersen et al. (2007) applied a model of dependence on 7 

economic and demographic factors for the 25 EU states. The inclusion of influential factors in 8 

the forecast (economics, sociology, demography) will be discussed further in Section 4. 9 

 10 

TSA has a significant representation among the approaches used for forecasting waste 11 

production. The choice of method for time series analysis depends on many factors, but the 12 

length of the time series is crucial. WM usually offers only short-time series of data. In this 13 

case, it is possible to successfully model the trend component in the historical data by 14 

mathematical curves. It may be advantageous to use S-curves, as a logistic trend or a Gompertz 15 

curve Ghinea et al. (2016). These types of S-curves are asymptotically limited and it is therefore 16 

necessary to determine in advance the potential that the modelled quantity can reach.  17 

Sometimes the development of a time-series is disrupted by an external factor that changes its 18 

trend (legislation, change in waste collection, new materials etc.). Smejkalová et al. (2020a) 19 

introduced an approach correcting the S-curve trend in data using credibility theory. With this 20 

approach, it is possible to take into account a change in the trend even if the individual territories 21 

react to the intervention with different intensity. TSA models generally do not include 22 

hierarchy, which is ensured by approach presented by Pavlas et al. (2020). On the other hand, 23 

there were no criteria, which take into account the model quality. The explanatory predictor 24 

like demoghraphic development was also not considered. 25 

 26 

In most cases, WM plans are available in the national language of the country, making it 27 

difficult to study. The summarized forecasts within selected WM plans are available in 28 

Appendix A, which can help readers with analysis of approaches in other countries. Based on 29 

the study of selected WM plans it is clear that the forecast are often modelled on very short 30 

time-series of historical data. The definition of MSW is not the same for all EU member states. 31 

The inconsistent definition may cause also differences in the fulfilment of EU targets. The 32 

existence of non-uniform definition of MSW can be also substantiated by the fact that MSW 33 

production varies greatly among countries (Eurostat 2020). The different definitions do not 34 

represent significant limitation if they are consistent within historical data. The MSW treatment 35 

will be assessed according to the national definition at EU level. Even in WM plans, there is 36 

often no MSW treatment forecast. However, this is an essential information for planning of 37 

MSW treatment infrastructure to ensure proper waste management. This contribution presents 38 

a uniform methodology for production and waste treatment forecasts using data from the 39 

Eurostat database (Eurostat 2020). 40 

3 Contribution and Novelty 41 

In order to achieve the CEP targets, it is necessary to react in time to the changes. EU member 42 

states have currently different levels of WM. Some of them are already on track to meet targets 43 

with their current form of WM. In other cases, changes in WM will be needed to meet the CEP 44 

targets in a timely manner. It is essential to identify the appropriate form of WM for each 45 

individual state. Key information will be provided by the forecast of MSW production and 46 

treatment. Based on the results of the forecast it is possible to assess whether it is necessary to 47 

change the current form of WM.  48 

 49 
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This contribution presents an approach for forecasting the MSW production and treatment. The 1 

input data is information on the annual amount of MSW in the history. The available data set 2 

plays a crucial part of successful forecast. The methodology uses TSA and trend evaluating, 3 

individual time series are solved on basis of available data and its properties. Therefore, more 4 

regression functions are introduced in this paper, which should take into account different 5 

development in the history more precisely. It also enables finding the trend in different units 6 

measures and unify them afterwards in data reconciliation. The methodology is based on the 7 

assumption of maintaining the link between production and treatment of waste – all produced 8 

waste must be treated in some way. This link is crucial from a planning point of view but has 9 

not been considered in previous publications.  10 

 11 

The data reconciliation is based on the method by Pavlas et al. (2020) using the principles of 12 

quadratic programming. But the methodology is significantly extended. Due to different nature 13 

of the task, two approaches for errors, and thus the form of the objective function to minimize, 14 

are introduced to keep mass balance in the system. The additive and multiplicative approaches 15 

are presented with individual advantages and recommendations in specific situations based on 16 

experience with optimisation models and solvers on real data sets. In addition to data 17 

reconciliation, the weights are newly addressed, which are developed to consider the quality of 18 

trend estimate and the significance of individual territory. Another novelty is the description of 19 

uncertain development by the construction of confidence and prediction intervals, which 20 

provide additional information about variability of collected data and parameters estimate in 21 

regression-based trend evaluation. With respect to the forecast methodology, standard statistics 22 

cannot be used for confidence interval and its construction is based on random sampling – the 23 

bootstrap method. The intervals also reflect the result from data reconciliation (deviation from 24 

trend) and the length of forecast.  25 

 26 

Literature review has shown that optimization is used only rarely for forecasting in waste 27 

management. This contribution presents approach based on non-linear regression, quadratic 28 

optimisation and experience with real data sets is used for EU forecasting. The expected 29 

demographic development of the state is taken into account. The methodology is a 30 

comprehensive approach to forecasting that is applicable to all EU member states and makes it 31 

possible to compare developments in individual EU member states. Part of the case study is a 32 

summary of the results and expected developments for EU member states and it also evaluates 33 

the recommendations for intervention in the way of MSW treatment for individual countries. 34 

The results can serve as a basis for adequate WM plans at national and EU level. 35 

4 Time series analysis 36 

The forecast of waste production and treatment carries several challenges. As review has 37 

shown, WM data are often available only annually. Unfortunately, the annual data do not 38 

provide a sufficiently long time series. In addition, the relatively long prediction horizon, which 39 

is usually modelled in the field of WM, must be considered. The reason is that infrastructure 40 

modification is a long-term issue that needs to be covered by a forecast already in the planning 41 

phase. The text in this section describes the proposed methodology for forecasting waste 42 

production and treatment. In this paper, waste treatment is also newly included in the model. 43 

The approach allows the inclusion of significant influencing factors where relevant data can be 44 

provided. However, the main idea is the analysis of time series with subsequent data 45 

reconciliation taking into account the links in the system. 46 
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4.1 Available data and influencing factors  1 

Waste production and treatment methods have been shown to be influenced factors, see 2 

Smejkalová et al. (2020b). According to regression models, waste production is specifically 3 

influenced by some economic variables, education and age composition of the population. The 4 

same is true for the method of waste treatment (Smejkalová et al. 2020b). In order to be able to 5 

use these links for the forecast of waste production and treatment, it is necessary to have 6 

forecasts of all important factors. 7 

 8 

Demographic forecasts are published for all EU member states in databases at European level 9 

(Eurostat 2020). In other areas (economics, sociology), mostly forecasts created by national 10 

institutions for specific countries are available. Economic forecasts are made only for short 11 

periods due to dynamic and unpredictable changes. For example, GDP is forecasted in German 12 

to 2023 (Deutsche Bundesbank Eurosystem 2021), in Austria to 2024 (Federal Ministry of 13 

Republic of Austria 2021) and in Czechia to 2023 (Czech National Bank 2021) and due to the 14 

current turbulent economic development the forecasts are probably not accurate. The basic 15 

precondition for the use of any factors is that their forecast covers the entire forecasting horizon, 16 

at least until 2035 with regard to the CEP. In the sufficient prediction horizon, only 17 

demographic forecasts are available. Another feature of economic and social forecasts are very 18 

wide confidence intervals if the uncertainty in the forecast is expressed at all. Therefore, it is 19 

not eligible to consider them in WM forecast.  20 

 21 

Historical data, period 1995–2018, annual detail (Eurostat 2020): 22 

• MSW production [kt], 23 

• MSW treatment [kt], 24 

• MSW material recycling [kt], 25 

• MSW composting [kt], 26 

• MSW energy recovery [kt], 27 

• MSW incineration [kt], 28 

• MSW landfilling [kt], 29 

• Population [person]. 30 

 31 

Forecast, period 2019–2035, annual detail: 32 

• Population [person]. 33 

MSW treatment considers all treatment methods in aggregated form. The approach to 34 

forecasting consists of five steps: data pre-processing, extrapolation of trend in historical data, 35 

inclusion of expected demographic development, data reconciliation to maintain the links in the 36 

system and confidence intervals. 37 

4.2 Data pre-processing 38 

The available datasets were aggregated, if desired, to allow comparison with EU targets. 39 

Specifically, it is waste recycling, which includes material recycling and composting. 40 

Furthermore, incineration will generally be referred to as incineration and energy recovery of 41 

waste. From the point of view of the targets, information on the energy production of waste 42 

incineration is not essential at this time. Although, according to the Waste management 43 

hierarchy (Directive 2008/98/EC) this is the preferred treatment method. Furthermore, the term 44 

incineration will be understood as MSW energy recovery + MSW incineration, similarly 45 
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recycling will be understood as MSW material recycling + MSW composting. Other datasets 1 

were not aggregated.  2 

 3 

Diverse algorithms on data pre-processing were developed and published in the past to identify 4 

significant deflections and changes in the data. The review was provided on outlier detection 5 

by Blázquez-García et al. (2020), and changepoint detection by Aminikhanghahi and Cook 6 

(2017).  Individual methods are suitable for a certain type of data and there is no known general 7 

method. Individual time series for waste production and treatment were expertly analysed to 8 

identify outliers and changepoints. There are outliers in the WM data that are not significant at 9 

the state level. This is an advantage for this application and outlier was detected only for 10 

treatment in Finland in the year 2015. This point was omitted for following steps of the 11 

calculation. At the state level, changes in the system can be evident, which will be reflected in 12 

changepoints. As part of pre-processing, it is desirable to reveal these points in time series.  13 

 14 

This EU state-level application includes a total of 145 time series from WM field, 5 variables 15 

(after the required aggregations) for 29 territories (28 states and EU as a whole). The case study 16 

is being carried out for the current 27 Member States of the European Union and the United 17 

Kingdom. These 145 time series were gradually assessed individually by experts. On the basis 18 

of a visual assessment, it was decided whether a changepoint occurs. Experience in waste 19 

management has been taken into account. This is especially the energy recovery, when new 20 

facilities are gradually built and there are step changes. However, these changes were not 21 

considered as anomalies in the data, but the trend of this series is modelled. The changepoints 22 

was identified for landfilling in 3 time series (Germany, Netherland, Austria) and for recycling 23 

in 2 time series (Bulgaria, Romania). For the next part of the calculation, the time series before 24 

the changepoint was neglected and the time series analysis was applied only to the part of the 25 

time series after the change. If there is a missing point in the data, it is considered an unavailable 26 

value and is not replaced in any way. 27 

4.3 Extrapolation of trend in historical data 28 

Every citizen produces waste, so MSW production and overall treatment is affected by 29 

demographic trends. For this reason, historical data on MSW production and overall treatment 30 

are converted from absolute quantities to kg / capita, so these values are extrapolated per capita. 31 

The specific treatment method is extrapolated as a rate of the total amount of waste treatment 32 

and the interconnection between methods is already included in trend estimate. This adjustment 33 

ensures the positive impact on trend quality, because any data oscillations can be smoothed out. 34 

 35 

The approach draws on the idea that the development of the observed variables in history will 36 

continue in the future, provided that the current conditions are maintained. It is therefore 37 

a forecast of the so-called scenario business-as-usual. Historical data are modelled by a suitable 38 

curve. Three trend functions are considered for historical data fitting: power function, logistic 39 

function and average. Primarily a trend in the form of a power function was considered 40 

(Eq. (1)).  41 

𝑝𝑡 = 𝑎 + 𝑏𝑡𝑐 , (1) 

 42 

where, 𝑝 is a dependent variable. Trend 𝑝 is fitted for the following dependent variables: 43 

production [kg / cap], treatment [kg / cap], recycling [%], incineration [%] and landfilling [%]. 44 

The symbol 𝑡 denotes the year, which is an independent variable. The regression coefficients 45 

sought are 𝑎, 𝑏, 𝑐. The nonnegativity of trend is ensured only after regression because this 46 

constrain represents difficulties. Any negative value of evaluated trend is set to zero. 47 
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 1 

If the coefficient 𝑐 > 1 applies, an exponential increase (or decrease) in the trend can be 2 

expected. In order to avoid the development of a too growing (or shrinking) trend and thus an 3 

unrealistic estimate of the development, in the case of 𝑐 > 1, the model was approached by a 4 

logistic function, see Eq. (2). To use this function, it is necessary to normalise the input data to 5 

0 – 1 range. The historical data should be normalised by minimum and maximum values that 6 

can be reached on the basis of the estimate. If such values are not available, it is recommended 7 

to use 1.5 times the maximum value of historical data for the upper limit and 0.5 times the 8 

minimum value of historical data for the lower limit.  9 

 10 

𝑝𝑡 =
1

1 + 𝑒−(𝑎+𝑏𝑡)
. (2) 

 11 

The notation remains the same as for Eq. (1). The regression coefficients are 𝑎, 𝑏.  12 

 13 

The non-linear regression was solved by non-linear optimisation, where finding a global 14 

solution is not guaranteed and therefore a suitable setting of the initial points is essential (e.g. 15 

by linearisation of equations). The choice of solver also plays key role (Chu et al. 2013). In the 16 

case, that there is no way to model the trend quality, the trend is modelled as an average in 17 

historical data. The average is modelled in the three following cases: 18 

1. If a small amount of data remains after pre-processing, so the trend cannot be modelled by 19 

a curve. The authors recommend modelling the trend only by an average in the case of less than 20 

five points of historical data. 21 

2. The trend model using above functions (1) or (2) has low quality. The criterion for this 22 

approach was the coefficient of determination 𝑅2 < 0.1. 23 

3.  Trend is modelled by average to avoid using a complicated model if the change from a simple 24 

model (average in the data) is very small. The criterion for the average model is as follows: 25 

 26 
|𝑝𝑖̅ − �̅�|

�̅�
< 0.05, 

(3) 

 27 

where 𝑖 ̅ is the last year of the forecasting horizon and �̅� is the average of historical data. 28 

Subsequently, the trend model 𝑝𝑡 is recalculated back to the absolute amount of waste produced 29 

in order to apply the data reconciliation model. 30 

5 Data reconciliation to maintain the links in the system 31 

Historical data on WM includes hierarchical links that result from the nature of the data. The 32 

idea of data reconciliation comes from the fact that the trend estimates 𝑝 are not in logical 33 

compliance (i.e., the sum of estimated production of states is not equal to estimated production 34 

of EU). Models based on this idea are commonly used for systems, where the values are 35 

measured with some errors and at the same time laws of physics applied (Galan et al. 2019). 36 

The goal of this paper is to obtain high-quality estimate of future waste production and 37 

treatment with respect to links in the system and at the same time, with minimal deviations from 38 

already estimated values obtained from trend extrapolation. 39 

5.1 Mathematical model 40 

The mathematical model for data reconciliation is based on quadratic optimisation and it is 41 

defined by objective function and set of boundaries. The objective function minimises the 42 

square of errors, which are influenced by weights. These errors represent the deflection from 43 
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evaluated trends. The minimisation is done with condition of fulfilment mass balance, which 1 

ensure the hierarchy. To evaluate the error 𝜀𝑗,ℎ, it can be based on the additive (A) or 2 

multiplicative (B) approach. In the case of additive approach (A), some problems may occur 3 

due to disproportion of input data (i.e. orders of magnitude different values). Multiplicative 4 

approach (B) is more complicated due to its solvability caused by non-linear dependencies. In 5 

some cases, the suitable chosen solver (KNITRO, Conopt or lpopt) can figure out this problem. 6 

Another solution is reducing the scale of task for considered links in balance conditions. The 7 

constraint conditions and objective function for the data balancing model are presented below. 8 

The time index is omitted in all equations because the model is developed for one period. 9 

Individual periods are balanced independently of each other. 10 

 11 

The Eq. (4) reflects the territorial hierarchy. It means in practise that the sum of production in 12 

countries is equal to EU production. The relationship between territories is defined by hierarchy 13 

matrix 𝐴𝑗,�̅�.  14 

 15 

𝑚𝑗,ℎ = ∑ 𝐴𝑗,�̅�𝑚�̅�,ℎ,

�̅�∈𝐽

 ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻. (4) 

 16 

The hierarchy from the point of view of WM respects the links between MSW production and 17 

treatment. This means that the MSW production is equal to the waste treatment and at the same 18 

time the individual methods of waste treatment (recycling, incineration, landfilling) are equal 19 

to the total amount of MSW treatment. The Eq. (5) ensures the required relationships by using 20 

matrix 𝑈ℎ,ℎ̅, which defines specific links.  21 

 22 

𝑚𝑗,ℎ = ∑ 𝑈ℎ,ℎ̅𝑚𝑗,ℎ̅,

ℎ̅∈𝐻

 ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻. (5) 

 23 

As a next part, the data errors must be defined. Below are two options for introducing model 24 

errors: additive (A) and multiplicative (B) form. The use of an additive or multiplicative form 25 

of the model depends on the specific task. The additive model (A) is unsuitable for tasks with 26 

a large difference in the size of input values. However, its advantage is that it is less 27 

computationally intensive and, in addition, it copes well with zero trends. The multiplicative 28 

model (B) works with a percentage change, thus eliminating the problem of different data sizes. 29 

On the other hand, it is a more computationally intensive variant. Moreover, it is unsuitable in 30 

the case of zero trend values, because the percentage change from zero still remains at zero. 31 

 32 

Conditions (9) and (10) are valid for both methods (A) and (B). The Eq. (6) connects the 33 

estimated amounts of waste 𝑝𝑗,ℎ with variables 𝑚𝑗,ℎ and errors 𝜀𝑗,ℎ in additive form. The Eq. 34 

(7) states link between amounts of waste 𝑝𝑗,ℎ and variables 𝑚𝑗,ℎ using multiplier 𝛿𝑗,ℎ. The Eq. 35 

(8) describes the deflection from trend function. The logarithm ensures symmetry of multiplier 36 

used, i.e. 𝛿𝑗,ℎ = 0.5 has the same impact on objective function as 𝛿𝑗,ℎ = 2. However, the 37 

logarithm function can make the model implementation more difficult and significantly 38 

influence the computing time, even the solvability. The formula 𝛿𝑗,ℎ + 𝜀𝑗,ℎ = 1 can be used 39 

instead of the logarithm, however the change of bigger amount is preferred (the same 40 

percentage change has bigger impact to satisfy mass balance). It can be partially maintained by 41 

appropriate weight (see Eq. (14)). Another limitation of multiplicative approach (B) is input 42 

zero values in production or waste handling. Such cases should be solved by additive approach 43 

(A). The Eq. (9) describes the division of error into positive and negative parts. This division 44 

of the error enables to implement other criteria, such as the sum of absolute error values, but 45 
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can also be used to add additional constrains or process the results. The formulas in Eq. (10) 1 

represent the nonnegativity of specific variables.  2 

 3 

(A) 𝑚𝑗,ℎ = 𝑝𝑗,ℎ + 𝜀𝑗,ℎ, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻, (6) 

(B) 𝑚𝑗,ℎ = 𝑝𝑗,ℎ𝛿𝑗,ℎ, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻, (7) 

(B) 𝜀𝑗,ℎ  =  𝑙𝑜𝑔 𝛿𝑗,ℎ, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻, (8) 

 𝜀𝑗,ℎ = 𝜀𝑗,ℎ
+ − 𝜀𝑗,ℎ

− , ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻, (9) 

 𝜀𝑗,ℎ
+ , 𝜀𝑗,ℎ

− , 𝛿𝑗,ℎ, 𝑚𝑗,ℎ ≥ 0, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻. (10) 

 4 

The aim of the forecast is to maintain these links. Compliance with constraints is required with 5 

the smallest possible change from the trend in the historical data. This is achieved by the 6 

minimisation task of mathematical programming. The formula Eq. (11) represents the objective 7 

function with weights 𝑣𝑗,ℎ and  𝑤𝑗,ℎ.  8 

 9 

∑ ∑(𝑣𝑗,ℎ𝑤𝑗,ℎ)
2

[(𝜀𝑗,ℎ
+ )

2
+ (𝜀𝑗,ℎ

− )
2

]

ℎ∈𝐻𝑗∈𝐽

. (11) 

 10 

The goal is to minimise the sum of squared errors related to each territorial unit and type of 11 

handling. The individual time-series are influenced by the weights 𝑣𝑗,ℎ and 𝑤𝑗,ℎ, which are 12 

described below. This correction achieves the final forecast of production and WM for the-13 

business-as usual scenario. Presented model is further used for every forecasted year. It can be 14 

beneficial to limit the maximal change from the trend 𝑝𝑗,ℎ, these are mainly cases that do not 15 

have a clear trend. For this condition, the estimation of waste production resp. treatment 16 

potential, if available, can be used. However, it is necessary to monitor the solvability of the 17 

model 18 

5.2 Ensuring the significance of input data 19 

The goal of the first weight 𝑣𝑗,ℎ is to ensure the significance of all input parameters. In the 20 

system of hierarchical arrangement, orders of magnitude of different values naturally occur. 21 

The same problem can be observed in the case of two countries of different sizes. The weights 22 

incorporation ensures that the error is minimised for each country with same rate, in other 23 

words, it is a kind of data normalisation. The weights are therefore defined as inverse value for 24 

each input data, see following formula Eq. (12), where 𝑡̅ is the last year of historical data. The 25 

reason is to ensure equal weight for all modelled years. This measure will be particularly 26 

important for declining trend, so as not to put too little weight on trends approaching zero. In 27 

the case where the trend is zero in year 𝑡̅, the weight 𝑣𝑗,ℎ is set to big M. This ensures that if the 28 

trend has reached zero in the historical data, a restart is not expected in the forecast. 29 

 30 

(A) 𝑣𝑗,ℎ = {

1

𝑝𝑗,ℎ,�̅�
,

𝑀,

 

for 𝑝𝑗,ℎ,,�̅� > 0, ∀ℎ ∈ 𝐻, ∀𝑗 ∈ 𝐽, 

 

for 𝑝𝑗,ℎ,,�̅� = 0, ∀ℎ ∈ 𝐻, ∀𝑗 ∈ 𝐽. 
(12) 

 31 

Thanks to this system of weights, each value in the model has the same significant level. The 32 

recommendation for some cases, where the big difference between hierarchical levels is 33 
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observed, is to consider the possibility of preference on higher territorial division. It can be 1 

achieved for additive approach (A) by using weights in the form defined by Eq. (13).  2 

 3 

(A) 𝑣𝑗,ℎ = {

1

√𝑝𝑗,ℎ,�̅�

,

𝑀,

 

for 𝑝𝑗,ℎ,,�̅� > 0, ∀ℎ ∈ 𝐻, ∀𝑗 ∈ 𝐽, 

 

for 𝑝𝑗,ℎ,,�̅� = 0, ∀ℎ ∈ 𝐻, ∀𝑗 ∈ 𝐽. 
(13) 

 4 

In the case of multiplicative approach (B), it is recommended to implement weights in the form 5 

defined by Eq. (14), which also makes preference on bigger amounts. However, there is no goal 6 

to normalise data, because the essence of the multiplicative approach is already a percentage 7 

change.    8 

 9 

(B) 
𝑣𝑗,ℎ = √

𝑝𝑗,ℎ,�̅�

max
𝑗

𝑝𝑗,ℎ,�̅�
, 

 ∀ℎ ∈ 𝐻, ∀𝑗 ∈ 𝐽. (14) 

 10 

These modified weights are very useful in that cases when more different models are used for 11 

forecasting estimate. Due to specific links in the system, some territory or waste handling must 12 

be modelled by diverse procedure or individual approach and this weight can help to maintain 13 

all dependencies with reasonable error from trend in every partial territory. Otherwise, there 14 

could be the tendency to modify region with greater values or higher territory division because 15 

it is more favourable in context of relative change in objective function. 16 

5.3 The quality of trend estimate 17 

The weight 𝑤𝑗,ℎ considers the quality of historical data fitting. Individual time series of 18 

historical data show different variability. The more reliable estimate of a trend can be observed 19 

in the case of stable and clear development in the history. It is desirable to preserve the set trend 20 

also in the future. In the case of more variable development, the trend is more difficult to be 21 

estimated and such time series are considered as less trustworthy in the process of data 22 

reconciliation. The weight 𝑤𝑗,ℎ quantify the quality of the data fitting and implement this 23 

information into the model. The weight is defined by Eq. (15) and Eq. (16) with range of values 24 

from 0.5 to 1. 25 

 26 

𝑤𝑗,ℎ =
1−

𝑆𝑀𝐴𝑃𝐸𝑗,ℎ

max(𝑆𝑀𝐴𝑃𝐸
ℎ
0,9

;𝑆𝑀𝐴𝑃𝐸𝑗,ℎ)

2
+ 0.5 , 

(15) 

𝑆𝑀𝐴𝑃𝐸𝑗,ℎ =
1

𝑇𝑗,ℎ
∑

|𝑝𝑖,𝑗,ℎ − 𝑥𝑖,𝑗,ℎ|𝑙𝑖,𝑗,ℎ

(|𝑥𝑖,𝑗,ℎ|+|𝑝𝑖,𝑗,ℎ|)/2

𝑇𝑗,ℎ

𝑖=1

. 
(16) 

 27 

The symbol 𝑥𝑖,𝑗,ℎ represents real data related to waste handling in year 𝑖 for time series in 28 

territory 𝑗 a waste handling ℎ. Index 𝑖 means years with available historical data. Next, the 𝑝𝑖,𝑗,ℎ 29 

represents the trend for the point 𝑥𝑖,𝑗,ℎ and the symbol 𝑙𝑖,𝑗,ℎ in a binary parameter taking into 30 

account results from data pre-processing. If the parameter 𝑙𝑖,𝑗,ℎ is equal to 0, the point was 31 

removed and has no impact on 𝑆𝑀𝐴𝑃𝐸𝑗,ℎ. Otherwise, the parameter 𝑙𝑡,𝑗,ℎ is equal to 1. The 32 

symbol 𝑇𝑗,ℎ is defined as total number of available points in time series after data pre-33 
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processing. 𝑆𝑀𝐴𝑃𝐸ℎ
0,9

 means 90. percentile of set of values of 𝑆𝑀𝐴𝑃𝐸𝑗,ℎ. The weight 𝑤𝑗,ℎ =1 

0.5 is set for the time series with higher value of 𝑆𝑀𝐴𝑃𝐸𝑗,ℎ than 90. percentile. The same value 2 

of the weight (𝑤𝑗,ℎ = 0.5) is defined for these time series, where no trend is modelled, and 3 

historical data was fitted by mean. The key requirement for weight calculation is to have same 4 

units for each time series in the model.   5 

 6 

With respect to the nature of the data reconciliation, it cannot be expected that the overall error 7 

for approach with weight 𝑤𝑗,ℎ is better than without it. Necessary adjustments for ensuring the 8 

mass balance are in sum the same. The difference lies in which time series are adjusted to 9 

maintain links in the system. The goal is to modify those time series, which show more 10 

variability. On the contrary, it is not suitable to change data, which shows long-term and 11 

obvious trend. 12 

5.4 Confidence and prediction intervals 13 

The important additional information is variability of estimated values. The confidence interval 14 

represents the uncertainty of parameters estimate. It provides an insight into likely future 15 

direction of the trend. On the other hand, it does not provide the variability of specific values 16 

around the trend. These values can deviate from the trend, especially for data set with big 17 

variability. The prediction interval determines the uncertainty for individual data sample. It is 18 

usually significantly wider and shows the variability around the trend. This additional 19 

information reflects bigger variability in future estimated value. The construction of intervals 20 

estimates is complicated due to territory hierarchy and data reconciliation. Thanks to 21 

implemented errors, which preserve the links in the system, the standard methods are not 22 

directly usable. Therefore, the construction is based on scenarios, which are calculated by 23 

model-based bootstrap with resampling errors. The error from data reconciliation and the length 24 

of prediction are implemented. The wider intervals can be expected in the case of bigger 25 

deviations and longer forecast. The procedure is as follows, where 𝑡 denoted forecasted years: 26 

• Step 1: The above-mentioned methodology is performed to get the estimate 𝑚𝑡,𝑗,ℎ for 27 

each period 𝑡, which is based on base scenario, i.e. point estimate.  28 

• Step 2: The data residuals 𝜖𝑡
𝑗,ℎ

 from evaluated trend are determined. These residuals 29 

form a set, from which the values are selected for parametric bootstrap. The residuals 30 

should be centred by subtracting the average of residuals from each residual of a time 31 

series. It is also recommended to take into account the number of parameters in 32 

regression used for trend estimates and apply scaled residuals defined by Eq. (17).  33 

 34 

𝜖�̃� =
𝜖𝑡

√1 −
𝑞
𝑛

. (17) 

 35 

The symbol 𝑛 is number of points in time series used for trend estimate and 𝑞 is number 36 

of parameters in regression used for trend estimates. As another way based on non-linear 37 

regression is to use standardised residuals, which are defined by Eq. (18).  38 

 39 

𝜖�̃� =
𝜖𝑡

√1 − �̃�𝑖𝑖

. (18) 

 40 
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The element �̃�𝑖𝑖 is diagonal element of regression matrix, which rows contain gradients 1 

of the trend function with respect to a specific parameter in the point estimate of this 2 

parameter. This formulation can lead to unfavourable results if historical data represents 3 

short time series much more than Eq. (17). Therefore, it is recommended to use previous 4 

formula, because available data represents one of the biggest problems of forecasting. 5 

• Step 3: The generation of new random sample is performed for 𝛽 bootstrap. The 6 

residuals are selected from the set defined in previous step for each point of time series. 7 

It is selection with repetition. The data for 𝛽 bootstrap is defined as �̃�𝑡,𝛽
𝑗,ℎ

= 𝑝𝑡,𝑗,ℎ +8 

𝜖�̃�,𝛽
𝑗,ℎ

,where 𝑝𝑡,𝑗,ℎ is trend and 𝜖�̃�,𝛽
𝑗,ℎ

 is a residual from range defined in step 2.  9 

• Step 4: The methodology for trend analysis and data reconciliation is performed for each 10 

generated scenario 𝛽. The result is future development estimate �̃�𝑡,𝛽
𝑗,ℎ

 for bootstrap 𝛽. 11 

The recommendation is to perform at least 30 bootstrap repetitions. 12 

• Step 5: The correction 
𝑛+�̃�

𝑛
 is introduced to take into account the fact, that the 13 

methodology is based on TSA, which is neglected in bootstrap principle. It can be 14 

expected that the residuals are positively corelated, which leads to greater variance.  It 15 

represents caution in the cases, where long prediction is performed with short available 16 

time series. The symbol �̃� is order of predicting year. Thanks to this correction, longer 17 

prediction has wider interval as well as fewer available points in historical data. 18 

• Step 6: Based on the newly obtained values of �̃�𝑡,𝛽
𝑗,ℎ

, confidence intervals for the 19 

obtained estimates are constructed. The approximate confidence interval for the trend 20 

in the data is determined by Eq. (19). 21 

 22 

(𝑚𝑡  −  𝑡𝑛−𝑞 (1 −
𝛼

2
) √

𝑛 + �̃�

𝑛
𝜎𝑡

2, 𝑚𝑡  + 𝑡𝑛−𝑞 (1 −
𝛼

2
) √

𝑛 + �̃�

𝑛
𝜎𝑡

2), (19) 

 23 

where 𝑡𝑛−𝑞 (1 −
𝛼

2
) is (1 −

𝛼

2
)-quantile of Student's t-distribution with 𝑛 − 𝑞 degree of 24 

freedom. The symbol 𝜎𝑡
2 represents the variance estimate of prognosis �̃�𝑡,𝛽

𝑗,𝑓
 based on 25 

bootstrap repetition. The prediction interval is defined by Eq. (20), where �̃�2 is variance 26 

estimate of residual component. Both variance estimates should consider the number of 27 

degrees of freedom equal to 𝑛 − 𝑞. 28 

 29 

(𝑚𝑡 − 𝑡𝑛−𝑞 (1 −
𝛼

2
) √

𝑛 + �̃�

𝑛
(𝜎𝑡

2 + �̃�2), 𝑚𝑡 + 𝑡𝑛−𝑞 (1 −
𝛼

2
) √

𝑛 + �̃�

𝑛
(𝜎𝑡

2 + �̃�2)  ). (20) 

 30 

For EU countries, the authors do not have a sufficient dataset to validate the approach. 31 

There are 145 time series and only 29 time series for waste production or particular 32 

waste treatment. Therefore, it is not possible to statistically evaluate the quality of the 33 

model on such a small data set.  For this reason, the computation of the prediction 34 

intervals was tested with WM data of Czech Republic (ISOH 2021), where the authors 35 

could obtain relevant number of time series. Unfortunately, the length of time series is 36 

too short for long-term assessment and the principle was evaluated only for one-year 37 

forecast. Overall dataset contains 206 regions and 17 waste types, which results to 3502 38 

time series. The 90 % prediction intervals cover 85 % of data points. The value was 39 

obtained by median from results of individual waste types. The median approach is less 40 
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sensitive to waste types outliers, which can occur in cases with unexpected legislative 1 

intervention or inaccuracies in available data set. Similar underestimated results were 2 

obtained for intervals with different value of significance. The 70 % intervals cover 62% 3 

of data points and the 50 % intervals cover 49 %.  The intervals should be wider from 4 

the essence of it, on the other hand, it can be considered satisfactory because the 5 

deviance is not great. The testing of this approach confirms the benefit of data 6 

reconciliation when real data is on average closer to reconciled data than the trend. The 7 

future research related to confidence and prediction intervals is needed to reveal 8 

improvements and the diagnostic of this approach should be repeated with additional 9 

data.  10 

6 Results 11 

The forecast of MSW production and treatment at the state level showed the expected 12 

development of WM for the so-called business as usual scenario. The Fig. 3 shows the waste 13 

production and treatment forecast for the EU. The results were obtained by additive approach 14 

(A) of data reconciliation due to occurrence of zero values. The additive approach works well 15 

because time series trend differences are commensurate with the size of the task. For each time-16 

series (production, recycling, incineration, landfilling), four data series are displayed in a given 17 

colour. The first of these is historical data, these are the input data for the forecasting approach. 18 

The trend in this data is modelled by a curve, which is shown by a solid line in each time-series. 19 

Trend in data for MSW recycling and landfilling were modelled by power function (Eq. (1)). 20 

Data on MSW incineration show a slightly exponential character, so trend was modelled by 21 

logistic function (Eq. (2)). Production data oscillate around the average value, so value of 𝑅2 is 22 

very low. Thus, the trend was modelled by the average in the data per capita. The Fig. 3 shows 23 

the absolute amount predicted for the EU, where the demographic forecast is already included. 24 

The trend model enters the data reconciliation. The Fig. 3 is shown at the EU level, so data 25 

reconciliation is also influenced by the trends of lower territorial units - states. The sum of 26 

trends at the national level is shown by the dashed line.  27 

 28 

The resulting forecast after data reconciliation is shown in solid dots. It is obvious that the 29 

results of data reconciliation for recycling and incineration are concentrated around two trends: 30 

on the basis of EU data (trend) and on the basis of the sum of trends for EU states (sum of 31 

trend). Limiting the decline in landfilling due to non-negativity needs to limit changes in other 32 

series. The approach due to landfilling accelerated MSW production in forecast. The landfilling 33 

deceleration should affect other types of MSW treatment rather than production. In the further 34 

research, it would be appropriate to modify the model in step-by-step data reconciliation or to 35 

implement correlations between time series. 36 

 37 
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 1 
Figure 3. Waste production and treatment forecast for EU 2 

 3 

The resulting forecast is supplemented by prediction intervals. They provide a necessary 4 

information about variability and show the credibility of forecasted data. If in any series the 5 

confidence or prediction interval reached a value lower than zero, it was limited to zero. The 6 

intervals for waste production and each type of waste treatment are shown for EU level in Fig. 4. 7 

It is obvious that intervals for waste treatment are relatively narrower in context of waste 8 

production. It supports the explanation of principle of data reconciliation described in Fig. 3, 9 

where production has the bigger deviation from trend.  10 

 11 

  
Figure 4a. Waste production forecast Figure 4b. Waste recycling forecast 

  
Figure 4c. Waste incineration forecast Figure 4d. Waste landfilling forecast 

Figure 4. WM development for EU in selected historical and forecasted years with confidence 12 

and prediction intervals 13 

 14 
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The step increase in the incineration is caused by historical development. The incineration is 1 

usually affected by the construction of new plant with large capacity, which is also projected 2 

into forecast. In the case of recycling, the growth slowdown can be observed around the year 3 

2008. It can be affected by bad economic situation in the world caused by the global economic 4 

crisis. In the subsequent research, it could be beneficial to focus on data cleansing based on 5 

social and economic factors. These are difficult to forecast, but their influence could be found 6 

in a historical context. 7 

 8 

The results of the forecast are compared with the EU's targets. The outputs of the forecast at 9 

state level were divided into three categories for individual countries, see Table 4, and marked 10 

with symbols defined in the Table 3. The Table 4 shows the numerical results of the forecast. 11 

Percentage recovery of recycling and landfilling of MSW is available in the last year with 12 

historical data from 2018 and the EU targets key years 2025, 2030, 2035. The last column 13 

„Meeting EU targets“ uses the symbols if the country will meet the EU's targets according to 14 

the legend in the Table 3. 15 

 16 

Table 3: Indication of forecast results 17 

Symbol Explanation 

 The EU's targets are met based on forecast (year 2035) of the current 

situation – there are no necessary interventions. 

 The EU's targets are met based on the positive scenario (upper 90 % 

prediction interval (PI) of recycling and lower 90 % PI incineration and 

landfilling) of the forecast. The better values to meet EU goals are 

presented. 

 The EU's targets will not be met with the current form of WM, not even 

within prediction intervals. Necessary interventions in the system. 

 18 

It is clear that only one country, Germany, in 2018 met the EU targets set for 2035 contained in 19 

the CEP, see Table 4. If the current trend of WM in the EU states is maintained in the future, 20 

based on the results, other 7 countries are expected to meet the EU's recycling targets for the 21 

key years. The question is whether these states can continue the established trend into the future 22 

until 2035. Limited equipment capacities, waste separation efficiency, etc. may be an obstacle 23 

to maintain the historical trend also to the future. With respect to the uncertainty and presented 24 

prediction intervals, there is probability that 18 countries will meet 65 % recycling rate and 10 25 

% landfilling rate for positive scenario. Of course, prediction intervals apply also to opposite 26 

side and therefore the number of countries can be smaller. Historical and forecasted data in 27 

selected years are visualised in Appendix B for the EU and its members. 28 

 29 

A lot of EU states face a situation where their current state of WM is failing to meet given 30 

milestones, especially in context of recycling. However, a relative diversion from landfilling 31 

can be observed, which is replaced mostly by incineration. If the targets set out in the CEP are 32 

not met, the EU states will be subjected to sanctions. Nevertheless, there are tools that can 33 

influence the way waste is handled and redirect waste in the desired direction. It is the 34 

responsibility of the state to ensure suitable conditions for the desired waste treatment, in 35 

particular, build the necessary equipment. As introduced by Smejkalová et al. (2020b), MSW 36 

production and treatment is affected by some economic, sociological and demographic 37 

variables. Focusing on these influencing factors can contribute to the transformation of WM. It 38 

is highly recommended to update results each year and flexibly respond to actual development 39 

and prediction. 40 

 41 
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Table 4: Results of MSW production and treatment forecast for EU states, comparison with EU 1 

targets 2 

Locality 

Recycling Landfilling Meeting EU targets 

2018 2035 

PI 

2035 2018 2035 

PI 

2035 Recycling Landfilling 

EU 48 % 60 % 64 % 23 % 5 % 1 %   

Austria 59 % 47 % 63 % 2 % 0 % 0 %   

Belgium 55 % 55 % 67 % 1 % 0 % 0 %   

Bulgaria 37 % 51 % 93 % 60 % 40 % 0 %   

Croatia 28 % 66 % 100 % 72 % 33 % 0 %   

Cyprus 17 % 41 % 81 % 82 % 57 % 19 %   

Czechia 35 % 75 % 92 % 49 % 0 % 0 %   

Denmark 48 % 48 % 68 % 1 % 0 % 0 %   

Estonia 31 % 40 % 89 % 24 % 0 % 0 %   

Finland 42 % 30 % 43 % 1 % 0 % 0 %   

France 44 % 63 % 67 % 21 % 0 % 0 %   

Germany 68 % 67 % 76 % 0 % 0 % 0 %   

Greece 19 % 34 % 77 % 80 % 64 % 23 %   

Hungary 37 % 77 % 93 % 49 % 0 % 0 %   

Ireland 43 % 63 % 86 % 24 % 0 % 0 %   

Italy 55 % 70 % 74 % 24 % 0 % 0 %   

Latvia 29 % 65 % 87 % 68 % 31 % 11 %   

Lithuania 59 % 76 % 84 % 27 % 0 % 0 %   

Luxembourg 50 % 59 % 65 % 6 % 0 % 0 %   

Malta 7 %  9 % 16 % 93 % 91 % 84 %   

Netherlands 56 % 52 % 64 % 1 % 0 % 0 %   

Poland 34 % 61 % 78 % 42 % 0 % 0 %   

Portugal 30 % 61 % 82 % 51 % 2 % 0 %   

Romania 12 % 45 % 90 % 82 % 42 % 0 %   

Slovakia 36 % 52 % 85 % 55 % 37 % 15 %   

Slovenia 75 % 77 % 100 % 12 % 0 % 0 %   

Spain 36 % 48 % 76 % 51 % 32 % 13 %   

Sweden 46 % 43 % 53 % 1 % 0 % 0 %   

United Kingdom 45 % 57 % 71 % 15 % 0 % 0 %   

7 Conclusion 3 

In order to meet the EU's strict targets, it is necessary to make the adjustments in WM in a 4 

timely manner. The need to intervene in the current system can be revealed by a forecast of 5 

expected development. This article presented a methodology for the forecast of MSW 6 

production and treatment. It is based on non-linear regression, quadratic optimisation and 7 

experience with real data sets, which leads to building a comprehensive tool with wide range 8 

of uses. The methodology is a generally applicable approach that can be applied to all EU 9 

member states. As results show, it is possible to estimate the expected way of waste treatment 10 
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and thus the fulfilment of EU targets. The forecast revealed that with current developments in 1 

WM, most EU member states are not on track to meet EU targets in time. Even under a positive 2 

scenario, not all states are expected to meet the EU targets. This crucial information should help 3 

to initiate efforts to modernize WM. 4 

 5 

In the follow-up, it would be appropriate to make forecasts also on greater detail of individual 6 

states (e.g., regions or municipalities). Modification of WM can then take place with a link to 7 

a specific area. The influence of demographic development and other influencing factors on 8 

specific treatment methods is another challenge that should be addressed in this area in the 9 

future. In addition, it would be beneficial to consider correlations between different waste 10 

treatment methods and production for data reconciliation model. Then it is possible to model 11 

scenarios that lead to the achievement of goals. Scenarios can identify regions that have the 12 

potential to improve WM and thus help national assessment. The cornerstone of the model is 13 

also the data availability, so future work will be focused on data collection related to specific 14 

waste treatment and territory detail. Construction of prediction intervals should take into 15 

account residuals variance depending on time. From the optimisation point of view, the future 16 

research can improve the model performance, solvability and starting points with respect to 17 

other solvers. The verification of the presented approaches could be evaluated with respect to 18 

data heteroskedasticity and other characteristics. Of course, the application of this approach on 19 

real data can reveal another links and dependencies, which can lead to extensions of the 20 

methodology and recommendations originating from the experience.  21 
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APPENDIX A: The summarized forecasts within selected waste management plans 

Czech Republic (Ministry of the Environment of Czech Republic 2014) 

• MSW definition: Group 20 from all producers and 15 01 from citizens based on Waste 

catalogue (ANION CS, 2021) 

• Treatment: yes 

• Territory level: state 

• Data detail: year 

• Number of data: 4 

• Forecast length: 12 

• Method: Design of 3 models: 1. linear regression, 2. exponential trend, 3. 

multidimensional linear model. 

 

Austria (Federal Ministry for Climate Protection, Environment, Energy, Mobility, Innovation 

and Technology 2017) 

• MSW definition: Municipal waste is waste from private households and other types of 

waste which, on account of its nature or composition, is similar to domestic waste. This 

includes fractions such as mixed municipal waste (residual waste), bulky waste or 

biogenic waste collected separately.  

There is no reference to the waste catalogue in the document. 

• Treatment: no 

• Territory level: state 

• Data detail: end state 

• Number of data: no information 

• Forecast length: 6 

• Method: No information 

 

Germany (LAGA 2021) 

There is no national waste management planning in Germany. Instead, each Federal State 

develops a waste management plan for its area. 

 

a) Berlin (Senate Department for Environment, traffic and climate protection 2011) 

• MSW definition: MSW is waste that, based on its origin, can be allocated to private 

households and is collected as part of public waste collection. MSW also includes waste 

from commercial industry and wastewater treatment plants 

• Treatment: no 

• Territory level: Federal state 

• Data detail: 2 milestones (2015, 2020) 

• Number of data: 1 

• Forecast length: 9 

• Method: Setting progressive targets to be met and will have an impact on waste 

production. Inclusion of demographic projection. 

 

b) Nordrhein-Westfalen (Ministry for Climate Protection, Environment, Agriculture, Nature 

and Consumer Protection of the State of North Rhine-Westphalia 2015) 

• MSW definition: Household waste is waste and packaging that is usually produced 

predominantly in private households and collected as part of public waste collection or 

from Take-back systems according to the Packaging Ordinance or Packaging Act, the 

so-called dual system. This typical household waste includes household and bulky 
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waste, organic and green waste, separately collected valuable waste or packaging 

(including paper, light packaging, glass) as well as waste that is collected as part of 

municipal pollutant collections. 

• Treatment: no 

• Territory level: District, administrative districts and municipalities  

• Data detail: year 

• Data detail: End state 

• Number of data: 1 

• Forecast length: 14 

• Method: Population projection combined with assumption about per capita waste 

production. 

 

c) Baden-Württemberg (Ministry of Environment Climate and Energy, 2015) 

• MSW definition: The document does not directly contain a definition of MSW, but the 

federal states have usually the same definition of MSW, see Nordrhein-Westfalen. 

• Treatment: no 

• Territory level: Federal state 

• Data detail: year 

• Number of data: 19 

• Forecast length: 10 

• Method: Determination of two scenarios for each type of waste. Scenarios are based on 

the expansion of the involved part of the population, the use of more efficient methods 

of collection, greater promotion, etc. Involvement of the demographic projection, the 

percentage decrease in the number of inhabitants is considered. 

 

d) Hesse (Hessian Ministry for the Environment, Climate Protection, Agriculture and 

Consumer Protection 2015) 

• MSW definition: See Nordrhein-Westfalen. 

• Treatment: no 

• Territory level: Federal state  

• Data detail: 5 years 

• Number of data: 3 

• Forecast length: 12 

• Method: Population forecast and assumption of economic growth and fulfillment of 

goals in waste management. 

 

Poland (Ministry Climate and Environment of Poland 2021) 

• MSW definition: Municipal waste is waste generated in households and waste generated 

in retail trade, enterprises, office buildings and educational institutions as well as health 

care and public administration institutions, and the nature and composition of this waste 

is similar to that of waste generated in households. 

There is no reference to the waste catalogue in the document. 

• Treatment: no 

• Territory level: Region, state  

• Data detail: 2 milestones (2025, 2030) 

• Number of data: 1 

• Forecast length: 16 
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• Method:  Based on population forecast and two waste generation indexes – it is still 

assumed the same year-on-year growth in production (0.6% or 1.0%) and a decrease in 

population. 

 

Slovakia (Ministry of the Environment of Slovakia 2015) 

Waste management plan does not include any forecast 

• MSW definition:  Code 20 in Waste catalogue 

 

Finland (Launonen 2019) 

• MSW definition: Municipal waste means waste generated in permanent dwellings, 

holiday homes, residential homes and other forms of dwelling, including sludge in cess 

pools and septic tanks, as well as waste comparable in its nature to household waste 

generated by administrative, service, business and industrial activities. 

• Treatment: yes  

• Territory level: state  

• Data detail: End state 

• Number of data: 1 

• Forecast length: 8 

• Method:  The first scenario makes use of the waste volumes in 2015 as indicated in the 

waste statistics. The scenario presumes that the generation of waste has been 

successfully halted at the level of 2015. The second scenario makes use of the moderate 

waste quantity growth forecast to 2023 of the Forecasting waste volumes -project, in 

which future municipal waste quantities were modelled. 

 

Switzerland – Canton Zürich (Kanton Zürich 2021) 

• MSW definition:  waste from households, commercial and service companies with less 

than 250 full time employees. 

• Treatment: no 

• Territory level: Canton  

• Data detail: year 

• Number of data: 6 

• Forecast length: 18 

• Method:  No information 
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APPENDIX B: The waste management development for EU and its members 

 
Fig. 5. Waste management development for EU 

 

 
Fig. 6. Waste management development for Austria, Belgium, Bulgaria, Croatia, Cyprus and 

Czechia 
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Fig. 7. Waste management development for Denmark, Estonia, Finland, France, Germany and 

Greece 

 
Fig. 8. Waste management development for Hungary, Ireland, Italy, Latvia, Lithuania and 

Luxembourg 
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Fig. 9. Waste management development for Malta, Netherlands, Poland, Portugal and Romania  

 

 
Fig. 10. Waste management development for Slovakia, Slovenia, Spain, Sweden and United 

Kingdom 

 

 

 


